• Title/Summary/Keyword: turbulent flame

Search Result 425, Processing Time 0.018 seconds

An Experimental Study on Flame Structure and Combustion Characteristics of Turbulent Diffusion Flame(I) (난류확산화염의 화염구조와 연소특성에 관한 실험적 연구)

  • Choe, Byeong-Ryun;Jang, In-Gap;Choe, Gyeong-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.3
    • /
    • pp.1028-1039
    • /
    • 1996
  • This study was focused on the examination of the flame structure and the combustion characteristics of diffusion flame which was formed the turbulent shear flow of a double coaxial air jet system. The shear flow was formed by the difference velocity of surrounding air jet(U$\_$s/) and center air jet (U$\_$c/). So experimental condition was divided S-type flame (.lambda. > 1) and C-type flame (.lambda. < 1) by velocity ratio .lambda. (=U$\_$s//U$\_$c/). For examination of the flame structure and the combustion characteristics in diffusion flame, coherent structure was observed in flame by schlieren photograph method. We measured fluctuating temperature and ion current simultaneously and accomplished the statistical analysis of its. According to schlieren photograph, the flame was stabilized in the rim of the direction of lower velocity air jet, coherent eddy was produced and developed by higher velocity air jet. The statistical data of fluctuating temperature and ion current was indicated that reaction was dominated by higher velocity air jet. The mixing state of burnt gas and non-burnt gas was distributed the wide area at Z = 100 mm of C-type flame.

An Experimental Study on Flame Structure and Combustion Characteristics of Turbulent Diffusion Flame(II) (난류확산화염의 화염구조와 연소특성에 관한 실험적 연구(2))

  • Choe, Byeong-Ryun;Jang, In-Gap;Choe, Gyeong-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.3
    • /
    • pp.1050-1060
    • /
    • 1996
  • Recently, attention has been paid to the flame diagnostic by noncontact methods which dose not deform the flame shape. One of them is a method which is using the radical luminous intensity. Generally, this diagnostic method using radical luminous has been investigated its reliability by applying to laminar flame. This study, however, investigated each radical luminous signals through stocastical analysis like auto-correlation, cross-correlation, phase and coherence which were acquired from measuring radical luminous intensity of OH, CH, $O_{2}$, radicals in turbulent diffusion flame. To compare radical luminous intensity in flame with temperature, ion current and concentration , radious distribution of each properties was investigated and considered. In radical luminous intensity, correlation in the reaction zone of flame was higher than in correlation in combusted gas zone. And radious distribution of radical luminous intensity was corresponded with radious distribution of temperature, ion current and concentration. The result of the study confirms that a radical luminous flame diagnosis is possible in the turbulent diffusion flame.

Numerical Study on Structure and Pollutant Formation for Syngas Turbulent Nonpremixed Swirling Flames (석탄가스 선회난류 비예혼합 화염장의 화염구조 및 NOx 배출특성 해석)

  • Lee, Jeong-Won;Kang, Sung-Mo;Kim, Yong-Mo;Joo, Yong-Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.2
    • /
    • pp.10-17
    • /
    • 2009
  • The present study numerically investigate the effects of the Syngas chemical kinetics on the basic flame properties and the structure of the Syngas nonpremixed flames. In order to realistically represent the turbulencechemistry interaction and the spatial inhomogeneity of scalar dissipation rate, the Eulerian Particle Flamelet Model (EPFM) with multiple flamelets has been applied to simulate the combustion processes and NOx formation in the syngas turbulent nonpremixed flames. Validation cases include the Syngas turbulent nonpremixed jet and swirling flames. Based on numerical results, the detailed discussion has been made for the effects of the chemical kinetics, the flame structure, and NOx formation characteristics in the turbulent Syngas nonpremixed flames.

  • PDF

The Effect of Residence Time on the Generation of Silica Nanoparticles in a Turbulent Diffusion Flame (난류 확산화염에서 체류시간이 실리카 나노입자의 생성에 미치는 영향)

  • Kwak, In-Jae;Bae, Soo-Ho;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.196-201
    • /
    • 2006
  • Silica(SiO2) nanoparticles are used as additives in plastics and rubbers to improve mechanical, electrical, magnetic properties and optical material. Silica nanoparticles were synthesized by the gas phase thermal oxidation of several kinds of precursors in many types of reactor. Diffusion flame reactor has some advantages compared with other types of reactors. In this study, we investigated the generation of silica nanoparticles on the effect of residence time by tetraethylothosilicate(TEOS) in a turbulent diffusion flame reactor controlled by providing reactant flowrate and reactor geometry affect particle morphology, particle size and particle size distribution. To determine the flame residence time, flame length should be determined which was examined by ICCD image. Particle size, distribution and morphology were performed with TEM.

  • PDF

A study on the development of liquefied natural gas-fired combustor (액화천연가스 연소기개발에 관한 연구)

  • 최병륜;오상헌;김덕줄
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.107-118
    • /
    • 1986
  • The presenet research attempts to examine the combustion characteristics and the structure of the flame in turbulent premixed flames and thus enhance the combustion performance that leads to the design of the effective combustion system (untilizing LNG). Following experimental investigations for several stabilized premixed flames were attempted to identify the interactive mechanism between flame structures and flow fields; Visualization by Schlieren method, measurement of flow velocity by LDV, detection of ion current by ion probe, measurement of fluctuating temperature by thermocouple having compensation circuit, average values with respect to time of fluctuating amount for flow velocity, temperature, ion current, etc., variable RMS values, PDFs, autocorrelation, crosscorrelation, spatial macroscale, power spectra, and velocity scale. Continuing the authors published studies whose flame dominated by coherent structures and the characteristics of combustion reaction for irregular three dimensional flame and stabilized flame by step were investigated with obtained experimental quantities. Results of this research are following : The most turbulent flames support the structure of a Wrinkled laminar flame or laminar flamelets. It also observed that combustion reaction is related to small tubulence microscales of the turbulent flow fields closly.

  • PDF

A Study on Combustion Characteristics of Turbulent Methane/Oxygen Diffusion Flames (메탄/산소 난류 확산화염의 연소 특성에 관한 연구)

  • Lee, Sang-Min;Kim, Ho-Keun;Kim, Han-Seok;Ahn, Kook-Young
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.118-123
    • /
    • 2004
  • The combustion characteristics of 0.03MW turbulent methane/oxygen diffusion flames have been investigated to give basic informations for designing industrial oxyfuel combustors. NOx reduction has become one of the most determining factors in the combustor design since 3-5% nitrogen is intrinsically included from the current oxygen producing processes. Flame lengths and NOx concentrations were measured by varying flow velocities with and without installing quarls. Flame stabilities are significantly enhanced by oxyfuel combustion in contrast to air-fuel combustion. Flame length decreases with increasing fuel or oxygen velocity because of the enhancement of turbulent mixing. NOx concentration was reduced with increasing flo velocities. This can be attributed to the entrainment of inert product gases into flame decreasing flame temperature. The installation of quarl on the burners rather increased NOx concentration since the quarl blocked the entrainment above the nozzles.

  • PDF

On the Large Eddy Simulation of High Prandtl Number Scalar Transport Using Dynamic Subgrid-Scale Model

  • Na, Yang
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.173-182
    • /
    • 2004
  • The present study has focused on numerical investigation on the flame structure, flame lift-off and stabilization in the partially premixed turbulent lifted jet flames. Since the lifted jet flames have the partially premixed nature in the flow region between nozzle exit and flame base, level set approach is applied to simulate the partially premixed turbulent lifted jet flames for various fuel jet velocities and co-flow velocities. The flame stabilization mechanism and the flame structure near flame base are presented in detail. The predicted lift-off heights are compared with the measured ones.

Numerical Modeling of Turbulent Nonpremixed Lifted Flames

  • Kim, Hoojoong;Kim, Yongmo;Ahn, Kook-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.167-172
    • /
    • 2004
  • The present study has focused on numerical investigation on the flame structure, flame lift-off and stabilization in the partially premixed turbulent lifted jet flames. Since the lifted jet flames have the partially premixed nature in the flow region between nozzle exit and flame base, level set approach is applied to simulate the partially premixed turbulent lifted jet flames for various fuel jet velocities and co-flow velocities. The flame stabilization mechanism and the flame structure near flame base are presented in detail. The predicted lift-off heights are compared with the measured ones.

An Experimental Study on Scaling of Nitrogen Oxide emissions of H2/CO Non-premixed Turbulent Jet Flame with Coaxial Air (동축공기가 있는 H2/CO 비예혼합 난류 제트화염의 질소산화물 배출 상사식에 대한 실험적 연구)

  • Sohn, Kitae;Hwang, Jeongjae;Bouvet, Nicolas;Yoon, Youngbin
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.259-261
    • /
    • 2012
  • The effect of fuel composition and coaxial air on the nitrogen oxide emission index was studied in a non-premixed turbulent jet flame. Validity of experimental setup and methodology is checked. The NOx emission trend is similar with previous works in hydrogen flame, but it's not well in $H_2/CO$ flame. Normalized EINOx scaling with modified $S_G$ applying near-field concept was conducted. Experimental data don't collapse single correlation curve, but partially same trend is observed in all cases.

  • PDF

A Study on the Structure of Turbulent Diffusion Flame Behind the Hollowed Flame Holder(II) (중앙분공형 보염기 후류에 안정된 난류확산화염의 구조에 관한 연구(II))

  • Kang, I.G.;Lee, W.S.;Moon, J.K.;Lee, D.H.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.29-35
    • /
    • 1999
  • The purpose of study is to investigate the flame stability and structure of turbulent diffusion flame behind the hollowed flame holder, which is located on the waste gas coming out from the test furnace. PDFs and Power Spectra technique of fluctuating temperature and ion current measurement were needed for this purpose. We discussed that the three types of stabilized flames were found as the result of post study. In this paper, we established the stability mechanism near the flame holder.

  • PDF