• Title/Summary/Keyword: turbulent flame

Search Result 425, Processing Time 0.024 seconds

Characteristics of Stabilization Point in Lifted Turbulent Hydrogen Diffusion Jet with Coaxial Air (부상된 동축공기 수소 난류확산화염에서의 화염안정화 특성)

  • Oh, Jeong-Seog;Kim, Mun-Ki;Yoon, Young-Bin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.352-356
    • /
    • 2008
  • In this study of lifted hydrogen jet with coaxial air, we have experimentally studied the characteristics of stabilization point in turbulent diffusion flames. The objectives are to present the phenomenon of a liftoff height decreasing as increasing fuel velocity and to analyse the flame structure and behavior including liftoff mechanisms. The fuel jet exit velocity was changed from 100 up to 300 m/s and a coaxial air velocity was fixed at 16 m/s with a coflow air less than 0.1 m/s. For the simultaneous measurement of velocity field and reaction zone, PIV and OH PLIF technique was used with two Nd:Yag lasers and CCD cameras. It has been suggested that the stabilization of lifted hydrogen diffusion flames was correlated with a turbulent intensity, $S_t{\sim}u^{\prime}$, and jet Reynolds number, $S_t{\sim}Re^{0.017}_{jet}$.

A Study on the Particle Behavior in Turbulent Pulverized Coal Flame (난류 미분탄화염 내 입자거동에 관한 연구)

  • Hwang, Seung-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.12
    • /
    • pp.1111-1118
    • /
    • 2010
  • Combustion measurements based on optical techniques have recently become of major interest as tools not only for clarifying the combustion mechanism but also for validating the computational results for the combustion fields. In this study, the particle behavior in turbulent pulverized coal flame are investigated using advanced optical diagnostics. A laboratory-scale pulverized coal combustion burner is specially fabricated as open type in order to apply various optical measurement techniques. The detailed particle behavior is performed by LDV (laser Doppler velocimetry) and SDPA (shadow Doppler particle analyzer). It is observed that the particle mean diameter increase as the distance from burner increases, and this is found to be caused by the decrease of small particles' diameter and increase of large particles' diameter. This is because of result in the char reaction and the particle swelling due to devolatilization, respectively. The size-classified streamwise velocities of pulverized coal particles in the central region of the jet show the same magnitude, whereas those in the outer region are different depending on the particle size. The results show that the velocity and size-classified diameter of the pulverized coal particles in the flame can be measured well by SDPA.

Experimental Study of Flow Characteristics with Swirl Number on Dump Combustor (모형 가스터빈 연소기에서 스월수에 따른 유동 특성에 관한 실험적 연구)

  • Park, Jae-Young;Han, Dong-Sik;Kim, Han-Seok;Song, Ju-Hun;Chang, Young-June;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.20 no.4
    • /
    • pp.338-345
    • /
    • 2011
  • The swirl flow applied for high efficiency and reduction of emission such as NOx, CO in a gas turbine engine makes recirculation zone by shear layer in the combustion chamber. This recirculation zone influences a decreasing flame temperature and flame length by burned gas recirculation. Also it is able to suppress from instability in lean-premixed flame. In this study, it was found that the swirl flow field was characterized as function of swirl number using PIV measurement in dump combustor. As increasing swirl number, a change of flow field was presented and recirculation zone was shifted in the nozzle exit direction. Also turbulent intensity and turbulent length scale in combustor were decreased in combustion. It has shown reduction of eddies scale with swirl number increasing.

Effects of Combustor Configuration on the Stability of Supersonic Turbulent Lifted Flame in a DCR Engine (이중 연소 램제트 엔진에서 연소기 형상에 따른 초음속 난류 부상 화염의 안정성 연구)

  • Choi, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.595-598
    • /
    • 2011
  • Supersonic combustion phenomena in the main combustor of a dual combustion ramjet (DCR) engine are studied numerically. Since the supersonic combustion is affected significantly by the compressibility effects parametric studies have been carried out for the constant are length and the divergence angle. Numerical studies with fixed inflow condition for different geometric configurations reveals that the supersonic combustion in DCR combustor has the characteristics of lifting flame, where the lifting flame is maintained near the injector tip for the case of long combustor length with small divergence angle, but the lifting height is significantly increase for large divergence angle resulting flame blow-out of the combustor. Therefore, it is concluded that flame stability should be considered sufficiently in the design o DCR combustor.

  • PDF

CFD ANALYSIS FOR HYDROGEN FLAME ACCELERATION IN THE IRWST ANNULUS TEST FACILITY (IRWST 환형관 실험장치 내의 수소화염 가속현상에 대한 CFD 해석 연구)

  • Kang, H.S.;Ha, K.S.;Kim, S.B.;Hong, S.W.
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.75-86
    • /
    • 2012
  • We developed a preliminary CFD analysis methodology to predict a pressure build up due to hydrogen flame acceleration in the APR1400 IRWST on the basis of CFD analysis results for test data of hydrogen flame acceleration in a scaled-down test facility performed by Korea Atomic Energy Research Institute. We found out that ANSYS CFX-13 with a combustion model of the so-called turbulent flame closure and a model constant of A = 5.0, a grid model with a hexahedral cell length of 5.0 mm, and a time step size of $1.0{\times}10^{-5}$ s can be a useful tool to predict the pressure build up due to the hydrogen flame acceleration in the test results. Through the comparison of the simulated results with the test results, we found out that the proposed CFD analysis methodology enables us to predict the peak pressure within an error range of about ${\pm}29%$ for the hydrogen concentration of 19.5%. However, the error ranges of the peak pressure for the hydrogen concentration of 15.4% and 18.6% were about 66% and 51%, respectively. To reduce the error ranges in case of the hydrogen concentration of 15.4% and 18.6%, some uncertainties of the test conditions should be clarified. In addition, an investigation for a possibility of flame extinction in the test results should be performed.

The Characteristics of Unconfined Hydrogen Diffusion Flames in Supersonic Air Flows (초음속 공기 유동장에서의 수소 확산 화염 특성에 대한 연구)

  • 김제흥;심재헌;김지호;윤영빈
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.78-86
    • /
    • 2000
  • The objective of this research is to understand the characteristics of a nonpremixed, turbulent, hydrogen jet flame which is stabilized in Mach 1.8 coflowing air flows. In order to investigate the flame structure, flame lengths and fuel trajectories were measured by using direct photography, acetone PLIF, Mie scattering techniques, and numerical simulation. Effect of increasing air velocity was investigated when fuel velocity is fixed. The subsonic flame length was decreased drastically, however the supersonic flame length was increased slowly Then the change of flame blow out characteristics was observed as varying fuel nozzle lip thickness. The flame stability can be increased when fuel nozzle lip thickness was increased, which indicates that the minimum fuel lip thickness ratio is required for the stable supersonic flames. Also, it is found that fuel jet is blocked by high pressure zone and low scattering zone is made. Then the fuel that was moving along the recirculation zone had longer residence time within the supersonic flames, which made partially premixed zone.

  • PDF

Combustion Characteristic Study of LNG Flame in an Oxygen Enriched Environment (산소부화 조건에 따른 LNG 연소특성 연구)

  • Kim, Hey-Suk;Shin, Mi-Soo;Jang, Dong-Soon;Lee, Dae-Geun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.1
    • /
    • pp.23-30
    • /
    • 2007
  • The ultimate objective of this study is to develop oxygen-enriched combustion techniques applicable to the system of practical industrial boiler. To this end the combustion characteristics of lab-scale LNG combustor were investigated as a first step using the method of numerical simulation by analyzing the flame characteristics and pollutant emission behaviour as a function of oxygen enrichment level. Several useful conclusions could be drawn based on this study. First of all, the increase of oxygen enrichment level instead of air caused long and thin flame called laminar flame feature. This was in good agreement with experimental results appeared in open literature and explained by the effect of the decrease of turbulent mixing due to the decrease of absolute amount of oxidizer flow rate by the absence of the nitrogen species. Further, as expected, oxygen enrichment increased the flame temperatures to a significant level together with concentrations of $CO_2$ and $H_2O$ species because of the elimination of the heat sink and dilution effects by the presence of $N_2$ inert gas. However, the increased flame temperature with $O_2$ enriched air showed the high possibility of the generation of thermal $NO_x$ if nitrogen species were present. In order to remedy the problem caused by the oxygen-enriched combustion, the appropriate amount of recirculation $CO_2$ gas was desirable to enhance the turbulent mixing and thereby flame stability and further optimum determination of operational conditions were necessary. For example, the adjustment of burner with swirl angle of $30\sim45^{\circ}$ increased the combustion efficiency of LNG fuel and simultaneously dropped the $NO_x$ formation.

Simulation of axisymmetric flows with swirl in a gas turbine combustor (Swirl이 있는 축대칭 연소기의 난류연소유동 해석)

  • Shin, Dong-Shin;Lim, Jong-Soo
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.117-121
    • /
    • 2000
  • We developed a general purpose program for the analysis of flows in a gas turbine combustor. The program uses non-staggered grids based on finite volume method and the cartesian velocities as primitive variables. We calculated a flow inside the C-type diffuser to check the boundary fitted coordinate. The velocity profiles at cross section agree well with experimental results. We calculated turbulent diffusion flame behind a bluff body for the combustion simulation. Simulation shows two recirculating region like experimental results. Simulated velocity, turbulent kinetic energy, temperature and concentration distribution agree well with experimental data. Finally, simulation of axisymmetric flows with swirl shows two recirculating region like experimental results.

  • PDF

Numerical Simulation on Thermoacoustic Instability in the Dump Combustor (덤프 연소기에서의 열음향 불안정에 관한 수치적 연구)

  • Kim, Hyeon-Jun;Bae, Soo-Ho;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.294-301
    • /
    • 2005
  • The instabilities in rocket engines and gas turbine combustors due to the interaction between the fluid flow (acoustics) and the heat transfer (thermal energy) are called thermoacoustic or combustion instabilities. Almost all analysis assumes constant hot section temperature for Modern mathematical analysis of acoustic oscillations in Rijke type devices. However, it is impossible to predict whether a system is stable or not because the flame or heater response model can have a dramatic effect on predicted growth rates. In this study, A standard ${\kappa}-{\varepsilon}$ turbulent model and hybrid combustion model(eddy breakup model and chemical reaction) were used. After steady solution was gotten, unsteady calculation is simulated by perturbating on pressure boundary. As a result, we obtained the relationship of equivalence ratio and frequency by numerical simulation, and they are comparable to the experimental result. In addition, in spite of these results, there are limitations of using turbulent and combustion model in simulation method of thermoacoutic instability

  • PDF

Numerical Modeling of Soot Formation in $C_2H_4$/Air Turbulent Non-premixed Flames ($C_2H_4$/Air 비예혼합 난류화염의 매연생성 모델링)

  • Kim, Tae-Hoon;Woo, Min-O;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.4
    • /
    • pp.22-28
    • /
    • 2010
  • The Direct Quadrature Method of Moments (DQMOM) has been presented for the solution of population balance equation in the wide range of the multi-phase flows. This method has the inherently interesting features which can be easily applied to the multi-inner variable equation. In addition, DQMOM is capable of easily coupling the gas phase with the discrete phases while it requires the relatively low computational cost. Soot inception, subsequent aggregation, surface growth and oxidation are described through a population balance model solved with the DQMOM for soot formation. This approach is also able to represent the evolution of the soot particle size distribution. The turbulence-chemistry interaction is represented by the laminar flamelet model together with the presumed PDF approach and the spherical harmonic P-1 approximation is adopted to account for the radiative heat transfer.