• Title/Summary/Keyword: turbulent eddy viscosity

Search Result 81, Processing Time 0.027 seconds

TURBULENT FLOW CHARACTERISTICS OF CHANNEL FLOW USING LARGE EDDY SIMULATION WITH WALL-FUNCTION(FDS CODE) (벽 함수가 적용된 대와류 모사(FDS 코드)의 채널에서의 난류 유동 특성)

  • Jang, Yong-Jun;Ryu, Ji-Min;Ko, Han Seo;Park, Sung-Huk;Koo, Dong-Hoe
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.94-103
    • /
    • 2015
  • The turbulent flow characteristics in the channel flow are investigated using large eddy simulation(LES) of FDS code, built in NIST(USA), in which the near-wall flow is solved by Werner-Wengle wall function. The periodic flow condition is applied in streamwise direction to get the fully developed turbulent flow and symmetric condition is applied in lateral direction. The height of the channel is H=1m, and the length of the channel is 6H, and the lateral length is H. The total grid is $32{\times}32{\times}32$ and $y^+$ is kept above 11 to fulfill the near-wall flow requirement. The Smagorinsky model is used to solve the sub-grid scale stress. Smagorinsky constant $C_s$ is 0.2(default in FDS). Three cases of Reynolds number(10,700, 26,000, 49,000.), based on the channel height, are analyzed. The simulated results are compared with direct numerical simulation(DNS) and particle image velocimetry(PIV) experimental data. The linear low-Re eddy viscosity model of Launder & Sharma and non-linear low-Re eddy viscosity model of Abe-Jang-Leschziner are utilized to compare the results with LES of FDS. Reynolds normal stresses, Reynolds shear stresses, turbulent kinetic energys and mean velocity flows are well compared with DNS and PIV data.

Development of k-$\epsilon$ model for prediction of transition in flat plate under free stream with high intensity (고난류강도 자유유동에서 평판 경계층 천이의 예측을 위한 난류 모형 개발)

  • Baek, Seong Gu;Lim, Hyo Jae;Chung, Myung Kyoon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.337-344
    • /
    • 2000
  • A modified k-$\epsilon$ model is proposed for calculation of transitional boundary layer flows. In order to develop the eddy viscosity model for the problem, the flow is divided into three regions; namely, pre-transition region, transition region and fully turbulent region. The pre-transition eddy-viscosity is formulated by extending the mixing Length concept. In the transition region, the eddy-viscosity model employs two length scales, i.e., pre-transition length scale and turbulent length scale pertaining to the regions upstream and the downstream, respectively, and a university model of stream-wise intermittency variation is used as a function bridging the pre-transition region and the fully turbulent region. The proposed model is applied to calculate three benchmark cases of the transitional boundary layer flows with different free-stream turbulent intensity ( $1\%{\~}6\%$ ) under zero-pressure gradient. It was found that the profiles of mom velocity and turbulent intensity, local maximum of velocity fluctuations, their locations as well as the stream-wise variation of integral properties such as skin friction, shape factor and maximum velocity fluctuations are very satisfactorily Predicted throughout the flow regions.

  • PDF

Influence of Input Parameters on Shock Wave Propagation in Quasi-3D Hydrodynamic Model (준3차원 동수역학 모형의 입력변수가 충격파 전파에 미치는 영향)

  • Rhee, Dong Sop;Kim, Hyung-Jun;Song, Chang Geun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.112-116
    • /
    • 2017
  • Present study investigated the influence of time step size, turbulent eddy viscosity, and the number of layer on rapid and unsteady propagation of dam break flow. When the time step size had a value such that it resulted in Cr of 0.89, a significant numerical oscillation was observed in the vicinity of the wave front. Higher turbulent viscosity ensured smooth and mild slope of velocity and water stage compared with the flow behavior by no viscosity. The vertical velocity at the lower layer positioned near the bottom showed lower velocity compared with other layers.

INFLUENCE OF EDDY VISCOSITY COEFFICIENT ON ${\kappa}-{\varepsilon}$ TURBULENCE MODEL FOR SUPERSONIC BASE FLOW (초음속 기저부 유동에서 ${\kappa}-{\varepsilon}$ 난류 모델에 대한 와점성 계수의 영향)

  • Park, Soo-Hyung;Sa, Jeong-Hwan;Kim, Jee-Woong;Kwon, Jang-Hyuk;Kim, Chang-Joo
    • Journal of computational fluids engineering
    • /
    • v.13 no.3
    • /
    • pp.1-7
    • /
    • 2008
  • A supersonic base flow is computed to investigate the effect of the eddy viscosity coefficient to the linear ${\kappa}-{\varepsilon}$ turbulence models. Slight modifications to the eddy viscosity coefficient, which are based on the realizability condition, are given to the Launder-Sharma turbulence model so that present models satisfy the realizability condition. Numerical results for supersonic base flow show that turbulence models with the weaky-nonlinear eddy viscosity coefficient can lead to reasonable enhancements in the prediction of the velocity and turbulent kinetic energy profiles.

The Curvature and Shear Effects on the Eddy Viscosity

  • Lim, Hyo-Jae
    • Journal of Energy Engineering
    • /
    • v.8 no.2
    • /
    • pp.293-297
    • /
    • 1999
  • Direct comparisons are made between curvature-corrected eddy viscosity models and the present experimental data. The results show that the curvature effects can be quantified through a curvature parameter R$\sub$c/ or S$\sub$c/ and a non-equilibrium value of p/$\varepsilon$. The data reveal a significant dependence of the eddy viscosity on the curvature and strain history for a fluid in a stabilizing curvature field, S$\sub$c/>1.0. Especially, experimental result shows that the eddy viscosity coefficient ratio at S$\sub$c/=3 changes from 10 to -10 although shear rate preserved constant. It is therefore suggested that proper curvature modifications, particularly the strain history effect, must be introduced into current eddy viscosity models for their application to turbulent flows subjected to curvature straining field for a non-negligible period of time.

  • PDF

A Numerical Analysis of Flow through Open Channel Constrictions using Turbulence Model (난류모델을 이용한 개수로 급축소부 흐름의 수치해석)

  • Choe, Heung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.3
    • /
    • pp.201-210
    • /
    • 1997
  • To analyze the flow through open-channel constrictions using $\kappa$-$\varepsilon$ turbulence mode, a numerical model is developed. The simulated results agree well with existing experimental data which attributes to the adequate input of turbulent eddy-viscosity by turbulence model. A stream function and velocity distributions enable the analysis of flow characteristics at the downstream of constriction. Turbulent eddy viscosities over channel are spatially varied with stream pattern. For the evaluation of rapidly varied flow, the eddy-viscosity input by turbulence model is required instead of the empirical effective viscosity to solve a shallow water equation.

  • PDF

Large Eddy Simulation of Turbulent Channel Flow Through Estimation of Test Filter Width (Test Filter 너비의 추정을 통한 난류 채널 유동의 Large Eddy Simulation)

  • Choi, Ho-Jong;Lee, Sang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.853-858
    • /
    • 2003
  • The suitable estimation of the filter width in the dynamic eddy viscosity model were investigated in high Reynolds number channel flow. In this study, the improvement on matters by optimizing the test filter shape was attempted through the numerical experiment. The way that select optimum test filter width is recommended. Some test filters, one is based on a discrete representation of the top-hat filter and another are based on a high-order filtering operation, are evaluated in simulations of the turbulent channel flow at Reynolds number 1020, based on friction velocity and channel half width. It appears that the estimation of test filter width practically can decrease the dissipative nature of dynamic eddy viscosity model with explicit test filter. It shows that the value of the filter width ratio used in the dynamic procedure must match the properties of the test filter actually used in the calculation.

Development of νt-κ-γ Turbulence Model for Computation of Turbulent Flows (난류유동 해석을 위한 νt-κ-γ 모델의 개발)

  • Choi, Won-Chul;Seo, Young-Min;Choi, Sang-Kyu;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.12
    • /
    • pp.1014-1021
    • /
    • 2009
  • A new eddy viscosity equation was formulated from assumption of turbulence length scale equation and specific dissipation ratio equation. Then, a set of turbulence model equations for the turbulent kinetic energy ${\kappa}$, the viscosity ${\nu}_t$, and the intermittency factor ${\gamma}$ is proposed by considering the entrainment effect. Closure coefficients are determined by experimental data and resorting to numerical optimization. Present model has been applied to compute four representative cases of free shear flows and successfully compared with experimental data. In particular, the spreading rate, the centreline mean velocity and the profiles of intermittency are calculated with improved accuracy. Also, the proposed ${\nu}_t-{\kappa}-{\gamma}$ model was applied to channel flow by considering the wall effect and the results show good agreements with the Direct Numerical Simulation data.

A New k-$\varepsilon$ Model for Prediction of Transitional Boundary-Layer Under Zero-Pressure Gradient (압력 구배가 없는 평판 천이 경계층 유동을 예측하기 위한 k-$\varepsilon$모형의 개발)

  • Baek, Seong-Gu;Im, Hyo-Jae;Jeong, Myeong-Gyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.305-314
    • /
    • 2001
  • A modified model is proposed for calculation of transitional boundary layer flows. In order to develop the eddy viscosity model for the problem, the flow is divided into three regions; namely, pre-transition region, transition region and fully turbulent region. The pre-transition eddy-viscosity is formulated by extending the mixing length concept. In the transition region, the eddy-viscosity model employs two length scales, i.e., pre-transition length scale and turbulent length scale pertaining to the regions upstream and the downstream, respectively, and a universal model of stream-wise intermittency variation is used as a function bridging the pre-transition region and the fully turbulent region. The proposed model is applied to calculate three benchmark cases of the transitional boundary layer flows with different free-stream turbulent intensity (1%∼6%) under zero-pressure gradient. It was found that the profiles of mean velocity and turbulent intensity, local maximum of velocity fluctuations, their locations as well as the stream-wise variation of integral properties such as skin friction, shape factor and maximum velocity fluctuations are very satisfactorily predicted throughout the flow regions.

Large Eddy Simulation for a 2-D hydrofoil using VIC(Vortex-In-Cell) method (VIC 방법을 사용한 2차원 날개의 LES 해석)

  • Kim, M.S.;Kim, Y.C.;Suh, J.C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.407-413
    • /
    • 2011
  • VIC (Vortex-In-Cell) method for viscous incompressible flow is presented to simulate the wake behind a modified NACA16 foil. With uniform rectangular grid, the velocity in field is calculated using streamfunction from vorticity field by solving the Poisson equation in which FFT(Fast Fourier Transform) is combined with 2nd order finite difference scheme. Here, LES(Large Eddy Simulation) with Smagorinsky model is applied for turbulence calculation. Effective viscosity is formulated using magnitude of strain tensor(or vorticity). Then the turbulent diffusion as well as viscous diffusion becomes particle strength exchange(PSE) with averaged eddy viscosity. The well-established panel method is combined to obtain the irrotational velocity and to apply the no-penetration boundary condition on the body panel. And wall diffusion is used for no-slip condition numerical results of turbulent stresses are compared with experimental results (Bourgoyne, 2003). Before comparing process, LES(Large Eddy Simulation) SGS(Subgrid scale) stress is transformed Reynolds averaged stress (Winckelmans, 2001).

  • PDF