• Title/Summary/Keyword: turbulent burning velocity

Search Result 31, Processing Time 0.027 seconds

Experimental Study on Turbulent Burning Velocities of Two-Component Fuel Mixtures of Methane, Propane and Hydrogen

  • Kido, Hiroyuki;Nakashima, Kenshiro;Nakahara, Masaya;Hashimoto, Jun
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.2
    • /
    • pp.1-7
    • /
    • 2001
  • In order to elucidate the turbulent burning velocity of the two-component fuel mixtures, the lean and rich two-component fuel mixtures, where methane, propane and hydrogen were used as fuels, were prepared keeping the laminar burning velocity nearly the same value. Clear difference in the measured turbulent burning velocity at the same turbulence intensity can be seen among the two-component fuel mixtures with different addition rate of fuel, even under nearly the same laminar burning velocity. The burning velocities of lean mixtures change almost monotonously as changing addition rate, those of rich mixtures, however, do not show such a monotony. These phenomena can be explained qualitatively from the local burning velocities, estimated by considering the preferential diffusion effect for each fuel component. In addition, a prediction expression of turbulent burning velocity proposed for the one-component fuel mixtures can be applied to the two-component fuel mixtures by using the estimated local burning velocity of each fuel mixture.

  • PDF

Validation of an asymptotic zone conditional expression for turbulent burning velocity against DNS database (영역조건평균에 기초한 난류연소속도의 직접수치해법검증)

  • Kim, Soo-Youb;Huh, Kang-Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.4
    • /
    • pp.1-8
    • /
    • 2004
  • Zone conditional formulation for the Reynolds average reaction progress variable is used to derive an asymptotic expression for turbulent burning velocity. New DNS runs are performed for validation in a statistically one dimensional steady state configuration. Parametric study is performed with respect to turbulent intensity, integral length scale, density ratio and laminar flame speed. Results show good agreement between DNS results and the asymptotic expression in terms of measured maximum flame surface density and estimated turbulent diffusivity in unburned gas.

  • PDF

Validation of an asymptotic zone conditional expression for turbulent burning velocity against DNS database (영역조건평균에 기초한 난류연소속도의 직접수치해법검증)

  • Kim, Soo-Youb;Huh, Kang-Y.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.62-69
    • /
    • 2004
  • Zone conditional formulations for the Reynolds average reaction progress variable are used to derive an asymptotic expression for turbulent burning velocity. New DNS runs are performed for validation in a statistically one dimensional steady state configuration. Parametric study is performed with respect to turbulent intensity, integral length scale, density ratio and laminar flame speed. Results show good agreement between DNS results and the asymptotic expression in terms of measured maximum flame surface density and estimated turbulent diffusivity in unburned gas.

  • PDF

Validation of the Turbulent Burning Velocity Based on Asymptotic Zone Conditional Transport in Turbulent Premixed Combustion (영역조건평균에 기초한 난류예혼합 화염 전파 속도식 유도 및 검증)

  • Lee, Dong-Kyu;Huh, Kang-Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.1
    • /
    • pp.23-30
    • /
    • 2008
  • An analytical expression for the turbulent burning velocity is derived from the asymptotic zone conditional transport equation at the leading edge. It is given as a sum of laminar and turbulent contributions, the latter of which is given as a product of turbulent diffusivity in unburned gas and inverse scale of wrinkling at the leading edge. It was previously shown that the inverse scale is equal to four times the maximum flame surface density in the wrinkled flamelet regime [1]. The linear behavior between $U_T$ and u' shows deviation with the inverse scale decreasing due to the effect of a finite flamelet thickness at higher turbulent intensities. DNS results show that $U_T/S^0_{Lu}$ may be given as a function of two dimensionless parameters, $u'/S^0_{Lu}$ and $l_t/\delta_F$, which may be transformed into another relationship in terms of $u'/S^0_{Lu}$, and Ka. A larger $l_t/{\delta}_F$ or a smaller Ka leads to a smaller scale of wrinkling, hence a larger turbulent burning velocity in the limited range of $u'/S^0_{Lu}$. Good agreement is achieved between the analytical expression and the turbulent burning velocities from DNS in both wrinkled and thickened-wrinkled flame regimes.

  • PDF

A study on the influence of turbulence characteristics on burning speed in swirl flow field (스월유동장에 있어서 연소속도에 미치는 난류특성의 영향에 관한 연구)

  • Lee, Sang Jun;Lee, Jong-Tai;Lee, Song-Yol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.244-254
    • /
    • 1996
  • Flow velocity was measured by, use of hot wire anemometer. Turbulence intensity was in proportion to mean flow velocity regardless of swirl velocity. And integral length scale has proportional relation with swirl velocity regardless of measurement position. Turbulent burning speed during flame propagation which was determined by flame photograph and gas pressure of combustion chamber was increased with the lapse of time from spark and was decreased a little at later combustion period. Because of combustion promotion effect, turbulent burning speed was increased according to increase of turbulence intensity. Burning speed ratio i.e. ratio of turbulent burning speed ($S_BT$) to laminar burning speed ($S_BL$) was found out by use of turbulence intensity u' and integral length scale $l_x$ , $\delta_L$ is width of preheat zone in laminar flame.

Characteristics of Turbulent Lifted Flames in Coflow Jet with Initial Temperature Variations (동축류 제트에서 초기 온도 변화에 따른 난류 부상화염 특성)

  • Kim, K.N.;Won, S.H.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.15-20
    • /
    • 2004
  • Characteristics of turbulent lifted flames in coflow jet have been investigated by varying initial temperature through the heating of coflow air. In the turbulent regime, liftoff height increases linearly with fuel jet velocity and decreases nonlinearly as the coflow temperature increases. This can be attributed to the increase of turbulent propagation speed, which is strongly related to laminar burning velocity. Dimensionless liftoff heights are correlated well with dimensionless jet velocity, which are scaled with parameters determining local flow velocity and turbulent propagation speed. This implies that the turbulent lifted flames are stabilized by balance mechanism between local turbulent burning velocity and flow velocity. Blowout velocity can be obtained from the ratio of mixing time to chemical time. Comparing to previous researches, thermal diffusivity should be evaluated from the initial temperature instead of adiabatic flame temperature.

  • PDF

Characteristics of Turbulent Lifted Flames in Coflow Jet with Initial Temperature Variations (동축류 제트에서 초기 온도 변화에 따른 난류 부상화염 특성)

  • Kim, K.N.;Won, S.H.;Chung, S.H.
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.1
    • /
    • pp.32-38
    • /
    • 2004
  • Characteristics of turbulent lifted flames in coflow jet have been investigated by varying initial temperature through the heating coflow air. In the turbulent regime, liftoff height increases linearly with fuel jet velocity and decreases nonlinearly as the coflow temperature increases. This can be attributed to the increase of turbulent propagation speed, which is strongly related to laminar burning velocity. Dimensionless liftoff heights are correlated well with dimensionless jet velocity, which are scaled with parameters determining local flow velocity and turbulent propagation speed. This implies that the turbulent lifted flames are stabilized by balance mechanism between local turbulent burning velocity and flow velocity. Blowout velocity can be obtained from the ratio of mixing time to chemical time. Comparing to previous researches, thermal diffusivity should be evaluated from the initial temperature instead of adiabatic flame temperature.

  • PDF

Spectral Model of Turbulent Burning Velocity Taking Account of the Diffusivity of Deficient Reactant (부족성분 확산계수의 영향을 고려한 난류연소속도의 스펙트럼 모델)

  • 김준효
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.3
    • /
    • pp.218-225
    • /
    • 1997
  • The formerly proposed spectral model of turbulent burning velocity is refined for nonstoichiometric hydrocarbon mixtures. Refinements are made in regard to the following two points : (1) an effect of the diffusivity of deficient reactant on the turbulent burning velocity and (2) consideration of increasing laminar name thickness with a decrease in the laminar burning velocity A comparison between the predicted turbulent velocities and the measured ones is made. The predictions by the refined spectral model agree quantatively well with the experimental results in the regime of practical equivalence ratio, but not in the high and low equivalence ratio regime.

  • PDF

An Experimental Study on the Turbulent Combustion Characteristics of Hydrocarbon Mixtures by Hydrogen Addition (수소를 첨가한 탄화수소 혼합기의 난류연소 특성에 관한 실험적 연구)

  • 김준효;한원희;키도히로유끼
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.65-72
    • /
    • 2003
  • In order to clarify turbulent combustion characteristics of hydrocarbon mixtures by hydrogen addition, turbulent burning velocities in a constant volume vessel were measured for both lean and rich hydrocarbon mixtures. Moreover, the configuration characteristics of turbulent flame was investigated in the wrinkled laminar flame region. A laser tomography technique was used to obtain the images of turbulent flame, and quantitative analyses were performed. As a result, the characteristics of turbulent burning velocity was shown a distinct difference with the addition rate of hydrogen between lean and rich mixtures. On the other hand, the obtained tomograms showed that the surface area of turbulent flame depends almost only on the turbulence intensity.

Measurements of the Burning Velocities of Flamelets in a Turbulent Premixed Flame

  • Furukawa, Junichi;Noguchi, Yoshiki;Hirano, Toshisuke;Williams, Forman A.
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.2
    • /
    • pp.65-70
    • /
    • 2001
  • To investigate statistics of flamelet in a turbulent premixed flame and to obtain components of their burning velocities in a vertical plane above a pipe-flow burner, the local motion of flamelets with respect to gas are measured by specially arranged diagnostics, composed of an electrostatic probe with four identical sensors and a two-color four-beam LDV system. With this technique, the three-dimensional local flame-front-velocity vector is measured by the electrostatic probe for the first time, and simultaneously the axial and radial components of the local gas-velocity vector in a vertical plane above the vertically oriented burner are measured by the LDV system. Two components of burning velocities of planar flamelets can be obtained from these results and are found to be distributed over different directions and to range in magnitude from nearly zero to a few times the planar, unstrained adiabatic laminar burning velocity measured in the unburnt gas. It may be concluded from these results that turbulence exerts measurable influences on flamelets and causes at least some of them to exhibit increased burning velocity.

  • PDF