• 제목/요약/키워드: turbulence profiles

검색결과 201건 처리시간 0.024초

FR-II radio jets and the acceleration of UHECRs

  • Seo, Jeongbhin;Kang, Hyesung;Ryu, Dongsu
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.39.2-39.2
    • /
    • 2021
  • To investigate the acceleration of ultra-high energy cosmic rays (UHECRs) in relativistic jets of FR-II galaxies, we simulate high-power jets with jet powers of Q~10^46erg/s in a stratified galaxy cluster halo using a state-of-art relativistic hydrodynamic (RHD) code we have recently developed. With the simulated jet-induced flow profiles, we then perform Monte-Carlo simulations, where the transport of high-energy particles is followed assuming large-angle scatterings in the flow-rest frame. We estimate the energy gains and acceleration times in the acceleration processes by shocks, shear, and turbulence. We present the results and discuss implications on the acceleration of UHECRs in FR II radio jets.

  • PDF

O-ring을 이용한 원주의 항력감소에 관한 실험적 연구 (Drag Reduction of a Circular Cylinder With O-rings)

  • 임희창;이상준
    • 대한기계학회논문집B
    • /
    • 제27권8호
    • /
    • pp.1174-1181
    • /
    • 2003
  • The flow around a circular cylinder was controlled by attaching O-rings to reduce drag force acting on the cylinder. Four experimental models were tested in this study; one smooth cylinder of diameter D (D=60mm) and three cylinders fitted with O-rings of diameters d=0.0167 D, 0.05D and 0.067 D with pitches of PPD=2D, 1D, 0.5D and 0.25D. The drag force, mean velocity and turbulence Intensity profiles in the near wake behind the cylinders were measured for Reynolds numbers based on the cylinder diameter in the range of Re$_{D}$=7.8$\times$10$^3$~1.2$\times$10$^{5}$ . At Re$_{D}$=1.2$\times$10$^{5}$ , the cylinder fitted with O-rings of d=0.0167D in a pitch interval of 0.25D shows the maximum drag reduction of about 5.4%, compared that with the smooth cylinder. The drag reduction effect of O-rings of d=0.067D is not so high. For O-ring circulars, as the Reynolds number increases, the peak location of turbulence intensity shifts downstream and the peak magnitude is decreased. Flow field around the cylinders was visualized using a smoke-wire technique to see the flow structure qualitatively. The size of vortices and vortex formation region formed behind the O-ring cylinders are smaller, compared with the smooth cylinder.der.

발전소 계통해석을 위한 MARS 코드의 다차원 이상 난류 유동 모델 검증계산 (Assessment of MARS Multi-dimensional Two-phase Turbulent Flow Models for the Nuclear System Analysis)

  • 이석민;이은철;배성원;정법동
    • 에너지공학
    • /
    • 제15권1호
    • /
    • pp.1-7
    • /
    • 2006
  • 원자력발전소의 다차원 이상 유동 현상을 적절히 모사하기 위해 일차원 계통해석 코드에 삼차원 유동모델을 적용하였다. 그 중 다차원모델에 새롭게 적용된 이상 난류모델을 검증하기 위해 사각 slab 내부의 단상유동을 계산하여 상용 CFD 코드의 계산결과와 비교하였다. 그 결과 단상유동의 경우 난류 모델의 계산이 적절히 수행됨을 알 수 있었다. 또한 다차원 이상 유동 계산을 검증하기 위해서 RPI에서 수행된 물-공기 다차원 실험의 기포율 분포를 비교하였다. 그 결과 다차원 모델의 이상 유동 계산을 위해서는 일차원 기반의 유동양상 맵 중 수평 분리 유동양상이 제거되어야 함을 알 수 있었다. 이와 같이 유동양상 맵을 수정하여 모사한 계산결과가 실험에서 측정된 기포율의 경향을 잘 따르는 것으로 계산되었다.

큰 박리유동을 동반한 초음속 관통형 핀틀노즐 유동에 적합한 2-방정식 난류모델의 압축성계수 보정 영향 (Compressibility Correction Effects of Two-equation Turbulence Models for a Supersonic Through-type Pintle Nozzle with Large Scale Separation Flow)

  • 허준영;정준영;성홍계;양준서;이지형
    • 한국추진공학회지
    • /
    • 제17권1호
    • /
    • pp.61-69
    • /
    • 2013
  • 핀틀 움직임에 의해 발생되는 큰 유동박리에 대해 적합한 2-방정식 난류모델의 압축성계수 보정모델을 판단하기 위하여 수치적 연구를 수행하였다. 난류모델은 저 레이놀즈수 k-${\varepsilon}$ 모델과 k-${\omega}$ SST 모델에 압축성 보정 모델(Wilcox와 Sarkar 모델)을 적용하여, 핀틀 노즐의 세부유동장을 관찰하고 노즐 벽면에서의 압력을 실험데이터와 비교 분석하였다. 마하디스크(Mach disk)의 위치와 박리영역에서의 압력 회복 형태는 난류모델에 따라 다르게 나타났으며, 각 난류모델에 압축성 보정을 적용하여 유동 박리 포획의 정확도를 개선하였다. 압축성이 보정된 k-${\varepsilon}$ 모델이 실험결과와 매우 잘 일치하였다.

A combination method to generate fluctuating boundary conditions for large eddy simulation

  • Wang, Dayang;Yu, X.J.;Zhou, Y.;Tse, K.T.
    • Wind and Structures
    • /
    • 제20권4호
    • /
    • pp.579-607
    • /
    • 2015
  • A Combination Random Flow Generation (CRFG) technique for obtaining the fluctuating inflow boundary conditions for Large Eddy Simulation (LES) is proposed. The CRFG technique was developed by combining the typical RFG technique with a novel calculation of k and ${\varepsilon}$ to estimate the length- and time-scales (l, ${\tau}$) of the target fluctuating turbulence field used as the inflow boundary conditions. Through comparatively analyzing the CRFG technique and other existing numerical/experimental results, the CRFG technique was verified for the generation of turbulent wind velocity fields with prescribed turbulent statistics. Using the turbulent velocity fluctuations generated by the CRFG technique, a series of LESs were conducted to investigate the wind flow around S-, R-, L- and U-shaped building models. As the pressures of the models were also measured in wind tunnel tests, the validity of the LES, and the effectiveness of the inflow boundary generated by the CRFG techniques were evaluated through comparing the simulation results to the wind tunnel measurements. The comparison showed that the LES accurately and reliably simulates the wind-induced pressure distributions on the building surfaces, which indirectly validates the CRFG technique in generating realistic fluctuating wind velocities for use in the LES. In addition to the pressure distribution, the LES results were investigated in terms of wind velocity profiles around the building models to reveal the wind flow dynamics around bluff bodies. The LES results quantitatively showed the decay of the bluff body influence when the flow moves away from the building model.

스월 충돌제트의 열전달 특성에 관한 실험적 연굴 (Experimental Study on Heat Transfer Characteristics of Swirling Impinging Jet)

  • 조정원;이상준
    • 대한기계학회논문집B
    • /
    • 제25권10호
    • /
    • pp.1346-1354
    • /
    • 2001
  • The heat transfer characteristics off swirling air jet impinging on a heated flat plate have been investigated experimentally. The main object is to enhance the heat transfer rate by increasing turbulence intensity of impinging jet with a specially designed swirl generator. The mean velocity and turbulent intensity profiles of swirling jet were measured using a hot-wire anemomety. The temperature distribution on the heated flat surface was measured with thermocouples. As a result the swirl effect on the local heat transfer rate on the impinging plate is confined mainly in the small nozzle-to-plate spacings such as L/D<3 at the stagnation region. For small nozzle-to-plate spacings, the local heat transfer in the stagnation region is enhanced from the increased turbulence intensity due to swirl motion, compared with the conventional axisymmetric impinging jet without swirl. For example, the local Nusselt number of swirling jet with swirl number Sw=0.75 and Sw=1 is about 9.7-76% higher than that of conventional impinging jet at the radial location of R/D=0.5. With the increase of the nozzle-to-plate distance, the stagnation heat transfer rate is decreased due to the diminishing axial momentum of the swirling jet. However, the swirling impinging jet for all nozzle-to-plate spacings tested in this study does not enhance the average heat transfer rate.

높은 레이놀즈수를 가진 난류 진동 경계층에서의 k-ε과 k-ω 난류모형의 비교 (Comparative Study on k-ε and k-ω Closures under the Condition of Turbulent Oscillatory Boundary Layer Flow at High Reynolds Number)

  • 손민우;이관홍;이길성;이두한
    • 한국수자원학회논문집
    • /
    • 제44권3호
    • /
    • pp.189-198
    • /
    • 2011
  • 본 연구는 난류현상의 모형화를 위해 널리 이용되는 k-$\varepsilon$과 k-$\omega$ 난류모형을 비교하는 것이 목적으로, 횡방향 흐름이 무시될 수 있는 U-튜브 모양의 터널형 수로 내 높은 레이놀즈수를 가진 진동 경계층 흐름에 두 난류해석방법을 적용하였다. 난류모형의 적용은 1차원 연직 모형을 통해 이루어지며, 수치 모의 결과, 유속의 분포와 난류운동에너지 (turbulent kinetic energy) 모두에서 두 모형이 매우 유사한 결과를 나타낸다. 이를 통하여, 횡방향 압력경사가 무시될 수 있는 조건에서는 k-$\varepsilon$과 k-$\omega$ 난류모형이 큰 차이를 보이지 않고, 우수한 결과를 나타냄을 알 수 있다. 따라서 직선형 하천 및 하구부, 해안에서의 파랑 흐름 등과 같이 횡방향의 압력경사가 미미한 지역에서의 난류를 수치적으로 해석할 경우, 기존의 풍부한 연구를 통해 매개변수의 검보증이 장기간 이루어진 k-$\varepsilon$ 모형을 이용하는 것이 추천된다.

Open-jet boundary-layer processes for aerodynamic testing of low-rise buildings

  • Gol-Zaroudi, Hamzeh;Aly, Aly-Mousaad
    • Wind and Structures
    • /
    • 제25권3호
    • /
    • pp.233-259
    • /
    • 2017
  • Investigations on simulated near-surface atmospheric boundary layer (ABL) in an open-jet facility are carried out by conducting experimental tests on small-scale models of low-rise buildings. The objectives of the current study are: (1) to determine the optimal location of test buildings from the exit of the open-jet facility, and (2) to investigate the scale effect on the aerodynamic pressure characteristics. Based on the results, the newly built open-jet facility is well capable of producing mean wind speed and turbulence profiles representing open-terrain conditions. The results show that the proximity of the test model to the open-jet governs the length of the separation bubble as well as the peak roof pressures. However, test models placed at a horizontal distance of 2.5H (H is height of the wind field) from the exit of the open-jet, with a width that is half the width of the wind field and a length of 1H, have consistent mean and peak pressure coefficients when compared with available results from wind tunnel testing. In addition, testing models with as large as 16% blockage ratio is feasible within the open-jet facility. This reveals the importance of open-jet facilities as a robust tool to alleviate the scale restrictions involved in physical investigations of flow pattern around civil engineering structures. The results and findings of this study are useful for putting forward recommendations and guidelines for testing protocols at open-jet facilities, eventually helping the progress of enhanced standard provisions on the design of low-rise buildings for wind.

개수로 내 식생구간의 흐름저항 및 흐름특성에 관한 실험적 고찰 (Experimental Study of Flow Resistance and Flow Characteristics over Flexible Vegetated Open Channel)

  • 여홍구;박문형;강준구;김태욱
    • 한국환경복원기술학회지
    • /
    • 제7권6호
    • /
    • pp.61-74
    • /
    • 2004
  • Hydraulic engineers and scientists working on river restoration recognize the need for a deeper understanding of natural streams as a complex and dynamic system, which involves not only abiotic elements(flow, sediments) but also biotic components. From this point of view, the role played by riverine vegetation dynamics and flow conditions becomes essential. Hydro-mechanic interaction between flow and flexible plants covering a river bed is studied in this paper and some previous works are discussed. Measurements of turbulence and flow resistance in vegetated open channel were performed using rigid and flexible tube. Measuring detailed turbulent velocity profiles within and above submerged and flexible stems allowed to distinguish different turbulent regimes. Some interesting relationships were obtained between the velocity field and the deflected height of the plants, such as a reduced drag coefficient in the flexible stems. Turbulent intensities and Reynolds stresses were measured showing two different regions : above and inside the vegetation domain. In flexible vegetated open channel, the maximum values of turbulent intensities and Reynolds stresses appear above the top of canopy. Method to predict a flow resistance in flexible vegetated open channel is developed by modifying an analytical model proposed by Klopstra et al. (1997). Calculated velocity profiles and roughness values correspond well with flume experiments. These confirm the applicability of the presented model for open channel with flexible vegetation. The new method will be verified in the real vegetated conditions in the near future. After these verifications, the new method should be applied for nature rehabilitation projects such as river restorations.