• 제목/요약/키워드: turbulence effects

검색결과 673건 처리시간 0.025초

패널법과 전산유동해석법의 결합을 이용한 날개단면 주위 점성유동 해석 (Viscous Flow Analysis around a Blade Section by a Hybrid Scheme Combining a Panel Method and a CFD Method)

  • 오진안;이진태
    • 대한조선학회논문집
    • /
    • 제50권5호
    • /
    • pp.355-363
    • /
    • 2013
  • Panel methods are essential tools for analyzing a fluid-flow problem around complex three dimensional bodies, but they lack ability to solve viscous effects. On the other hand, CFD methods are considered as powerful tools for analyzing fluid-flow characteristics including viscosity. However, they also have short falls, requiring more computing time and showing different results depending on the selection of turbulence models and grid systems. In this paper a hybrid scheme combining a panel method and a CFD method is suggested. The scheme adopts a panel method for far-field solution where viscous effects are negligible and a CFD method for the solution of RANS equations in near-field where viscous effects are relatively strong. The intermediate region between the far-field and near-field is introduced where the calculated field point velocities by the panel method are given as boundary velocities for the CFD method. To verify the scheme, calculated results, by a panel method, a CFD method and the hybrid scheme, for a two dimensional foil section are compared. The suggested hybrid scheme gives reasonable results, while computation time and memory can be dramatically reduced. By using the hybrid scheme efforts can be concentrated for the local flow near the leading and trailing edges, by providing more dense grid system, where detailed flow characteristics are required.

레이놀즈 수의 시간 증가율에 따른 난류 채널유동의 변화 (Effects of the Temporal Increase Rate of Reynolds Number on Turbulent Channel Flows)

  • 정서윤;김경연
    • 대한기계학회논문집B
    • /
    • 제40권7호
    • /
    • pp.435-440
    • /
    • 2016
  • 레이놀즈 수의 시간 증가율이 벽면난류 구조에 미치는 영향을 난류 채널유동에 대한 직접수치모사를 수행하여 조사하였다. 완전 발달된 $Re_{\tau}=180$의 난류 채널유동이 가속을 받게 되어 평균속도로 무차원화된 레이놀즈 수가 5600에서 13600까지 선형적으로 변화하게 된다. 다양한 가속 시간에 대한 계산을 수행하여 벽면난류에 대한 가속율의 효과를 파악하였다. 유량의 증가율이 큰 경우에는 우회 천이와 유사한 현상이 발견되었으며, 유량의 증가율이 낮은 경우에는 우회 천이 현상이 거의 나타나지 않았다. 본 연구 결과는 초기 레이놀즈 수와 최종 레이놀즈 수의 비 보다는 레이놀즈 수의 시간 증가율이 채널 내 과도유동에서의 우회 천이 현상 발생에 주요인자 임을 제시한다.

1단 축류 가스터빈내 동익의 허브면에 장착된 경계층 펜스의 효과에 대한 수치 해석적 연구 (Numerical Analysis on Effects of the Boundary Layer Fence Equipped on the Hub of Rotor in the First Stage Axial Flow Gas Turbine)

  • 윤덕규;김재춘;김대현;이원석;정진택
    • 한국유체기계학회 논문집
    • /
    • 제12권2호
    • /
    • pp.8-16
    • /
    • 2009
  • The objective of this study is to investigate the three-dimensional turbulence flow characteristics of a rotor passage of an one-stage axial flow gas turbine and to investigate the effects of a boundary layer fence installed on the hub endwall of the rotor passage. Secondary flows occurring within the rotor passage (e.g. horseshoe vortex, passage vortex, and cross flow) cause secondary loss and reduce turbine efficiency. To control these secondary flows, a boundary layer fence measuring half the height of the thickness of the inlet boundary layer was installed on the hub endwall of the rotor passage. This study was performed numerically. The results show that the wake and secondary flows generated by the stator reduced the rotor load to constrain the development of cross flow and secondary flow reinforced by the rotor passage. In addition, the secondary vortices occurring within the rotor passage were reduced by the rotation of the rotor. Although, the boundary layer fence induced additional vortices, giving rise to an additional loss of turbine, its presence was shown to reduce the total pressure loss when compared to effects of the case without fence regardless of the relative position of blades by enervating secondary vortices occurred within the rotor passage.

Impact of spar-nacelle-blade coupling on the edgewise response of floating offshore wind turbines

  • Dinh, Van-Nguyen;Basu, Biswajit;Nielsen, Soren R.K.
    • Coupled systems mechanics
    • /
    • 제2권3호
    • /
    • pp.231-253
    • /
    • 2013
  • The impact of spar-nacelle-blade coupling on edgewise dynamic responses of spar-type floating wind turbines (S-FOWT) is investigated in this paper. Currently, this coupling is not considered explicitly by researchers. First of all, a coupled model of edgewise vibration of the S-FOWT considering the aerodynamic properties of the blade, variable mass and stiffness per unit length, gravity, the interactions among the blades, nacelle, spar and mooring system, the hydrodynamic effects, the restoring moment and the buoyancy force is proposed. The aerodynamic loads are combined of a steady wind (including the wind shear) and turbulence. Each blade is modeled as a cantilever beam vibrating in its fundamental mode. The mooring cables are modeled using an extended quasi-static method. The hydrodynamic effects calculated by using Morison's equation and strip theory consist of added mass, fluid inertia and viscous drag forces. The random sea state is simulated by superimposing a number of linear regular waves. The model shows that the vibration of the blades, nacelle, tower, and spar are coupled in all degrees of freedom and in all inertial, dissipative and elastic components. An uncoupled model of the S-FOWT is then formulated in which the blades and the nacelle are not coupled with the spar vibration. A 5MW S-FOWT is analyzed by using the two proposed models. In the no-wave sea, the coupling is found to contribute to spar responses only. When the wave loading is considered, the coupling is significant for the responses of both the nacelle and the spar.

3D 스캔과 FLACS를 활용한 화학플랜트 가스 누출의 계절별 위험성 및 피해영향 평가 (A Seasonal Risk Analysis and Damage Effects Assessment by Gas Leakage of Chemical Plant using 3D Scan and FLACS)

  • 김지영;김지유;김의수
    • 한국가스학회지
    • /
    • 제25권4호
    • /
    • pp.1-9
    • /
    • 2021
  • 현대 화학 플랜트는 공정 및 설비가 복잡화, 세분화됨으로써 대규모 잠재 위험성이 증가하는 실정이다. 내부 화학물질이 난류, 층류, 압력, 온도, 마찰 등으로 인해 여러 조건하에 운영될 때 과도한 응력이 발생하고 이러한 발생 응력이 누적되면서 피로 등의 문제로 화학 설비 및 장치가 손상되거나 파열될 가능성이 존재한다. 사고통계에 따르면 여름철 화학 사고의 발생 빈도는 다른 계절에 비해 높게 나타나며 최근 5년간 발생한 화학 사고에서 누출에 의한 사고는 유형별 사고 중 압도적인 비율을 차지한다. 화학물질의 누출은 폭발 및 환경오염을 포함한 큰 인명 및 경제적 피해를 일으킬 수 있다. 이에 본 연구에서는 계절별로 화학 플랜트 배관 누출 시 위험성 및 피해영향 평가를 수행하기 위해 실제 프로필렌 누출사고 현장을 3D 스캐너를 활용하여 재구성하고 FLACS를 활용하여 계절별 최대농도, 끝점거리 및 확산 거동을 비교 분석함으로써 프로필렌의 계절별 누출 거동을 도출하였다. 그 결과 여름에 화학물질이 누출될 경우 다른 계절에 비해 위험성이 크게 나타나는 것을 확인하였으며 이를 통해 계절별 안전관리 대책 및 방안을 제시하였다.

노즐 특성 변화에 따른 미분무수와 화염과의 상호작용에 관한 수치해석 (Numerical Analysis on Interaction between Fire Flame and Water Mist according to the Variation of Nozzle Performance)

  • 배강열;정희택;김형범
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2983-2988
    • /
    • 2007
  • In the present study, the numerical investigation on the effects of water-mist characteristics has been carried out for the fire suppression mechanism. The FDS are used to simulate the interaction of fire plume and water mists, and program describes the fire-driven flows using LES turbulence model, the mixture fraction combustion model, the finite volume method of radiation transport for a non-scattering gray gas, and conjugate heat transfer between wall and gas flow. The numerical model is consisted of a rectangular enclosure of $L{\times}W{\times}H=1.5{\times}1.5{\times}2.0m$ and a water mist nozzle that be installed 1.8m from fire pool. In the study, the parameters of nozzle for simulation are the droplet size and the spray velocity. Finally, the droplet size influences to fire flume on fire suppression than spray velocity because of the effect of terminal velocity, and the optimal condition for fire suppression is that the droplet size and the spray velocity are $100{\mu}m$ and 20m/s, respectively.

  • PDF

Smart Harbor Crane Ship의 저항 추정 (Estimation of Resistance of Smart Harbor Crane Ship)

  • 신현경;김민수;정원진;하용확
    • 대한조선학회논문집
    • /
    • 제49권1호
    • /
    • pp.1-5
    • /
    • 2012
  • Recently, with increasing container ships' volume continuously, the conceptual design "Smart Harbor" of newly logistics processing system has been suggested. It is necessary to estimate resistance and horsepower for the selection of an appropriate propulsor at the initial design stage of Smart Harbor. In this study, CFD and the circulating water channel of the University of Ulsan are employed for estimating the resistance of the Smart Harbor Crane Ship with 1/100 scaled model. Two turbulent models are used. One is realizable k-${\varepsilon}$and the other is Reynolds stress turbulence model. In addition, the effects of the change in y+ and the number of meshes are considered during analysing.

Aerodynamic coefficients of inclined and yawed circular cylinders with different surface configurations

  • Lin, Siyuan;Li, Mingshui;Liao, Haili
    • Wind and Structures
    • /
    • 제25권5호
    • /
    • pp.475-492
    • /
    • 2017
  • Inclined and yawed circular cylinder is an essential element in the widespread range of structures. As one of the applications, cables on bridges were reported to have the possibility of suffering a kind of large amplitude vibration called dry galloping. In order to have a detailed understanding of the aerodynamics related to dry galloping, this study carried out a set of wind tunnel tests for the inclined and yawed circular cylinders. The aerodynamic coefficients of circular cylinders with three surface configurations, including smooth, dimpled pattern and helical fillet are tested using the force balance under a wide range of inclination and yaw angles in the wind tunnel. The Reynolds number ranges from $2{\times}10^5$ to $7{\times}10^5$ during the test. The influence of turbulence intensity on the drag and lift coefficients is corrected. The effects of inclination angle yaw angle and surface configurations on the aerodynamic coefficients are discussed. Adopting the existed the quasi-steady model, the nondimensional aerodynamic damping parameters for the cylinders with three kinds of surface configurations are evaluated. It is found that surface with helical fillet or dimpled pattern have the potential to suppress the dry galloping, while the latter one is more effective.

상용 미분탄 보일러 연소해석에서 석탄 탈휘발 모델 및 난류반응속도의 영향 평가 (Effects of coal devolatilization model and turbulent reaction rate in numerical simulations of a large-scale pulverized-coal-fired boiler)

  • 양주향;김정은;류창국
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.59-62
    • /
    • 2014
  • Predicting coal combustion by computational fluid dynamics (CFD) requires a combination of complicated flow and reaction models for turbulence, radiation, particle flows, heterogeneous combustion, and gaseous reactions. There are various levels of models available for each of the phenomena, but the use of advanced models are significantly restricted in a large-scale boiler due to the computational costs and the balance of accuracy between adopted models. In this study, the influence of coal devolatilization model and turbulent mixing rate was assessed in CFD for a commercial boiler at 500 MWe capacity. For coal devolatilization, two models were compared: i) a simple model assuming single volatile compound based on proximate analysis and ii) advanced model of FLASHCHAIN with multiple volatile species. It was found out that the influence of the model was observed near the flames but the overall gas temperature and heat transfer rate to the boiler were very similar. The devolatilization rate was found not significant since the difference in near-flame temperature became noticeable when it was multiplied by 10 or 0.1. In contrast, the influence of turbulent mixing rate (constant A in the Magnussen model) was found very large. Considering the heat transfer rate and flame temperature, a value of 1.0 was recommended for the rate constant.

  • PDF

3차원 PCB 채널내에서의 복사-혼합대류 열전달 특성 (Heat Transfer Characteristics of Radiation-Mixed Convection in a Three-Dimensional PCB Channel)

  • 이주형;박경우;박희용
    • 설비공학논문집
    • /
    • 제8권4호
    • /
    • pp.561-575
    • /
    • 1996
  • The interaction of turbulent mixed convection and surface radiation in a three-dimensional channel with the heated blocks is analyzed numerically. Two blocks are maintained at high temperature and the other bottom and horizontal walls are insulated. S-4 method is employed to calculate the effect of the radiative heat transfer. The low Reynolds number k-$\varepsilon$ model proposed by Launder and Sharma is used to estimate the turbulent influence on the heat transfer enhancement. From above modeling, the effects of various channel specifications on the flow and heat transfer characteristics are investigated. The variables used for the present study are Reynolds number, block spacing, the channel height spacing for block and the emissivity. Average Nusselt numbers along the block surfaces are correlated and presented in terms of Reynolds number, emissivity and dimensionless geometric parameters. For the range of conditions in this study, average Nusselt numbers along the block surfaces are strongly influenced by the Reynolds numbers and channel height spacing for block but weakly influenced by the block spacing and the emissivity of the adiabatic walls.

  • PDF