• Title/Summary/Keyword: turbo

Search Result 1,457, Processing Time 0.026 seconds

Comprehensive Analysis of Turbo TCM over Two Typical Channels

  • Bai, Zhiquan;Yuan, Dongfeng;Kwak, Kyung-Sup
    • Journal of Communications and Networks
    • /
    • v.9 no.1
    • /
    • pp.11-17
    • /
    • 2007
  • In this paper, system performance of turbo trellis coded modulation (turbo TCM) is presented and analyzed through computer simulations over two typical channels, namely additive white Gaussian noise (AWGN) and Rayleigh fading channels. We use and compare different mapping strategies based on Ungerboeck partitioning (UP), block partitioning (BP), mixed partitioning (MP), Gray partitioning (GP), and Ungerboeck-Gray partitioning (UGP) of the signal constellation of the turbo TCM system. Furthermore, taking 8PSK modulation of turbo TCM as an example, our simulation results show that turbo TCM with UP can obtain better performance than turbo TCM with BP, MP, GP, and UGP in both AWGN and Rayleigh fading channels.

Analysis of Turbo Coding and Decoding Algorithm for DVB-RCS Next Generation (DVB-RCS Next Generation을 위한 터보 부복호화 방식 분석)

  • Kim, Min-Hyuk;Park, Tae-Doo;Lim, Byeong-Su;Lee, In-Ki;Oh, Deock-Gil;Jung, Ji-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.9C
    • /
    • pp.537-545
    • /
    • 2011
  • This paper analyzed performance of three dimensional turbo code and turbo ${\Phi}$ codes proposed in the next generation DVB-RCS systems. In the view of turbo ${\Phi}$ codes, we proposed the optimal permutation and puncturing patterns for triple binary input data. We also proposed optimal post-encoder types and interleaving algorithm for three dimensional turbo codes. Based on optimal parameters, we simulated both turbo codes, and we confirmed that the performance of turbo ${\Phi}$ codes are better than that of three dimensional turbo codes. However, the complexity of turbo ${\Phi}$ is more complex than that of three dimensional turbo codes by 18%.

A turbo code with reduced decoding delay (감소된 복호지연을 갖는 Turbo Code)

  • 김준범;문태현;임승주;주판유;홍대식;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.7
    • /
    • pp.1427-1436
    • /
    • 1997
  • Turbo codes, decoded through an iterative decoding algorithm, habe recently been shown to yidel remarkable coding gains close to theoretical limits in the Gaussian channel environment. This thesis presents the performance of Turbo code through the computer simulation. The performance of modified Turbo code is compared to that of the conventional Turbo codes. The modified Turbo code reduces the time delay in decoding with minimal effect to the performance for voice transmission sytems. To achieve the same performance, random interleaver the size of which is no less than the square root of the original one should be used. Also, the modified Turbo code is applied to MC-CDMA system, and its performance is analyzed under the Rayleigh Fading channel environment. In Rayleigh fading channel environment, due to the amplitude distortion caused by fading, the interleaver of the size twice no less than that in the Gaussian channel enironment was required. In overall, the modified Turbo code maintained the performance of the conventional Turbo code while the time delay in transmission and decoding was reduced at the rate of multiples of two times the squared root of the interleaver size.

  • PDF

Turbo Decoding for Precoded Systems over Multipath Fading Channels

  • Zhang, Qing;Le-Ngoc, THo
    • Journal of Communications and Networks
    • /
    • v.6 no.3
    • /
    • pp.203-208
    • /
    • 2004
  • A combined precoding and turbo decoding strategy for multi-path frequency-selective fading channels is presented. The precoder and multi-path fading channel are jointly modeled as a finite-state probabilistic channel to provide the multi-stage turbo decoder with its statistics information. Both a priori and a posteriori probabilities are used in the metric computation to improve the system performance. Structures of the combined turbo-encoder, interleaver, and precoder in the transmitter and two-stage turbo decoder in the receiver are described. Performance of the proposed scheme in fixed, Rician and Rayleigh multi-path fading channels are evaluated by simulation. The results indicate that the combined precoding and two-stage turbo decoding strategy provides a considerable performance improvement while maintaining the same inner structure of a conventional turbo decoder.

A Study on the Rotordynamic Characteristics of the Micro Turbo Generator (터보 방식으로 구동되는 마이크로 파워 시스템의 회전체 동역학적 특성에 관한 연구)

  • Ryu, Keun;Lee, Yong-Bok;Lee, Byoung-Su;Kim, Chang-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.109-115
    • /
    • 2004
  • The micro turbo generator is new portable power source based on the Brayton cycle, which consists of a compressor, a turbine, a generator, and a combustion chamber. In this paper, the thermodynamic analysis was performed to find the required condition for hundreds watts power in the micro turbo generator, and also the rotordynamic stability was predicted using the numerical analysis of air foil bearings which support the micro turbo generator. By experimental works, the rotordynamic stability of the micro turbo generator with foil bearings was verified. While various transient dynamic situation, the micro turbo generator had stable performances. From the result, it was demonstrated that air foil bearings could be adapted to the micro turbo generator as a excellent lubrication element.

  • PDF

Performance Analysis and Efficient Decoding Algorithm for Space-Time Turbo codes (시공간 turbo 부호의 성능 분석과 효율적인 복호 알고리즘)

  • Shin Na na;Lee Chang woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4C
    • /
    • pp.191-199
    • /
    • 2005
  • Space-time turbo codes have been studied extensively as a powerful and bandwidth efficient error correction code over the wireless communication environment. In this paper, the efficient algorithm for decoding space-time turbo codes is proposed. The proposed method reduces the computational complexity by approximating a prior information for a iterative decoder. The performance of space-time turbo codes is also analyzed by using the fixed point implementation and the efficient method for approximating the Log-MAP algorithm is proposed. It is shown that the BER performance of the proposed method is close to that of the Log-MAP algorithm.

The Structure and Performance of Turbo decoder using Sliding-window method (슬라이딩 윈도우 방식의 터보 복호화기의 구조 및 성능)

  • 심병효;구창설;이봉운
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.116-126
    • /
    • 2000
  • Turbo codes are the most exciting and potentially important development in coding theory in recent years. They were introduced in 1993 by Berrou, Glavieux and $Thitimajshima,({(1)}$ and claimed to achieve near Shannon-limit error correction performance with relatively simple component codes and large interleavers. A required Eb/N0 of 0.7㏈ was reported for BER of $10^{-5}$ and code rate of $l/2.^{(1)}$ However, to implement the turbo code system, there are various important details that are necessary to reproduce these results such as AGC gain control, optimal wordlength determination, and metric rescaling. Further, the memory required to implement MAP-based turbo decoder is relatively considerable. In this paper, we confirmed the accuracy of these claims by computer simulation considering these points, and presented a optimal wordlength for Turbo code design. First, based on the analysis and simulation of the turbo decoder, we determined an optimal wordlength of Turbo decoder. Second, we suggested the MAP decoding algorithm based on sliding-window method which reduces the system memory significantly. By computer simulation, we could demonstrate that the suggested fixed-point Turbo decoder operates well with negligible performance loss.

  • PDF

Effects of Contrast Agent Concentration on the Signal Intensity and Turbo Factor of TSE and Slice-selective IR in T1-weighted Contrast Imaging

  • Han, Yong Soo;Lee, Soo Chul;Lee, Dong Yong;Choi, Jiwon;Lee, Jong Woong;Kweon, Dae Cheol
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.115-124
    • /
    • 2016
  • The present study analyzes T1 TSE and T1 slice sel. IR (dark_fluid) signal strength according to the degree of gadolinium contrast agent dilution and analyzes the turbo factors with regard to changes in the maximum and overall signal strength to study correlations between changes and signal-to-noise ratios (SNRs) and compare peak-to-peak SNR (PSNR) enhancement in order to improve the quality of T1-weighted images. Enhancement TR (600 msec) evaluated to determine the T1 TSE turbo factor and obtain the maximum signal strength, T1WI were used sequentially to experiment with turbo factors_1-4. T1 slice sel. IR (dark-fluid) was used to sequentially test turbo factors_2-5 but not turbo factor_1 at a TR (1500 msec) and compare data at an increase in T1 of 900 msec. The T1 TSE was reduced according to the contrast agent concentration. Phantom signal strength increased, whereas turbo factors_1-4 exhibited maximum signal strength at a concentration of 3 mmol, followed by a gradual decrease. In the turbo factors_2-5, the signal strength increased sharply to maximum signal strength at 0.7 mmol, followed by a reduction. T1 TSE had a greater maximum signal strength than did T1 slice sel. IR (dark_fluid). A comparison of SNR found that T1 TSE imaging was superior (33.3 dB) in turbo factor_1 and T1 slice sel. IR (dark_fluid) was highest (33.9 dB) at turbo factor_5. A PSNR comparison analysis was not sufficient to distinguish between the images obtained with both techniques at 30 dB or higher under all experimental conditions.

Design and performance analysis of turbo codes employing the variable-sized interleaver (가변 크기 인터리버를 사용한 turbo 부호의 설계와 성능 해석)

  • Lee, Chang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.2A
    • /
    • pp.86-95
    • /
    • 2003
  • With the advent of future mobile communication systems, the wireless transmission of the huge amount of multimedia data over the error-prone multipath fading channel has to overcome the inherent sensitivity to channel errors. To alleviate the effect of the channel errors, hosts of techniques based on the forward error correction(FEC) has been proposed at the cost of overhead rate. Among the FEC techniques, turbo code, whose performance has been shown to be very close to the Shannon limit, can be classified as a block-based error correction code. In this paper, considering the variable packet size of the multimedia data, we analyzed turbo codes employing the variable-sized interleaver. The effect of the various parameters on the BER performance is analyzed. We show that the turbo codes can be used as efficient error correction codes of multimedia data.

UEP Turbo Encoder for H.264/AVC (H.264/AVC를 위한 UEP Turbo Encoder)

  • Kim, June;Kim, Youngseop;Park, In-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.1
    • /
    • pp.51-53
    • /
    • 2015
  • H.264/AVC is international video coding standard, which shows improved code and efficiency than the existing video standards. H.264/AVC proposes data partitioning method that considerably to be an effective layering technique which separates important addressing data from the residual data. UEP(Unequal Error Protection) turbo code of H.264/AVC uses retransmission system to get the UEP effectively. However, Data partitioning system of H.264/AVC is inefficient method in turbo code of H.264/AVC. Based on this observation, we propose the new UEP turbo code algorithm that reconstructs input sequence of turbo code without retransmission system.