• Title/Summary/Keyword: turbine rotor

Search Result 882, Processing Time 0.026 seconds

An Experimental Study of Partial Admitted Flow Characteristics on a Small Axial-Type Turbine (소형축류형 터빈에서의 부분분사 유동특성에 관한 연구)

  • Cho, Chong-Hyun;Cho, Soo-Yong;Choi, Sang-Kyu
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.6 s.27
    • /
    • pp.28-37
    • /
    • 2004
  • An experimental study is conducted to investigate flow characteristics on a small axial-type turbine which is applied as the rotating part of air tools. It operates in a partial admission due to consumption restriction of the high pressure air. In this operating condition, it is necessary to understand flow characteristics for obtaining the high specific output power. Tested turbine consists of two stages and the mean radius of flow passage is less than 10mm. A 6 bar pressure air is used to operate the turbine. The experimental results show that flow angles depend on the measuring location along the circumferential direction, but its discrepancy is alleviated along the axial direction. Absolute flow velocities show three times difference according to the measuring location at the exit of the first rotor due to the partial admission, but they show similar value at the exit of the second rotor by the velocity diffusion. From the measured flow angles and velocities, a ratio of output power obtained by the first and second rotor is estimated. It shows that the output power obtained by the second rotor is about $11\%$ to that by the first rotor at 60,000 RPM. It is effective therefore to improve the first rotor for increasing the turbine output power.

Numerical Study of the Supersonic Turbine Rotor Tip Variation Effect on the Turbine Performance (로터 팁 간극이 초음속 터빈 성능에 미치는 영향에 대한 전산해석 연구)

  • Park, Pyun-Goo;Jeong, Eun-Hwan;Kim, Jin-Han;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.382-386
    • /
    • 2006
  • Three dimensional numerical analysis of the supersonic turbines with different rotor tip clearances was conducted to analyze the effect of the tip gap clearance variations on the turbine performance. The result showed that the turbine performance deteriorates and the tip leakage increases by the effect of the rotor tip clearance and the tip leakage affects turbine performance degradation dominantly.

  • PDF

A 3-D Numerical Study on the Interaction between Nozzle and Rotor Blades of Partial Admission Supersonic Turbine (부분입사형 초음속 터빈의 노즐-로터 상호작용에 관한 3차원 수치적 연구)

  • Yun, Won-Geun;Cho, Jong-Jae;Kim, Kui-Soon;Kim, Jin-Han
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.1
    • /
    • pp.67-72
    • /
    • 2007
  • In this paper, numerical results for 3-D supersonic turbine flow have been firstly compared with the experimental results to verify results computed by $Fine^{TM}/Turbo$. It was found that $Fine^{TM}/Turbo$ can accurately predict flow characteristics within supersonic turbine. Next, an grid system for 3D turbine flow was optimized selected through grid independency test. Finally, the effect of axial gap between rotor and nozzle and chamfer angle of blade edge on the flow characteristics within 3-D supersonic turbine was analyzed with Frozen Rotor method.

  • PDF

Development of a algorithm for thermal stress analysis of turbine rotor (터빈 로터 열응력 해석 알고리즘 개발)

  • Chang, S.H.;Baek, S.K.;Chung, C.G.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2284-2289
    • /
    • 1998
  • The Rotor Stress Indicator is an integrated system of hardware and program components which has been designed to read an assortment of turbine temperature and speed input devices, perform an analysis of the temperature induced stresses and output pertinent temperature and stress information to guide the turbine operator during turbine prewarming, start-ups, load changes, and shut-downs. The purpose of the RSI is to provide guidance to the plant operator during startup, shutdown, loading, and unloading of the turbine. Since the stresses are a function of the temperature changes to which the turbine is exposed, the RSI also provides guidance for operation of the boiler main steam and reheat steam temperatures as they affect the rotor stresses. This may permit more efficient overall boiler turbine start-ups. In this paper, new rotor stress analysis algorithm for RSI is introduced and compared with present system which has been used in thermal power plant.

  • PDF

A Study on the One-Stage 3-Dimensional Axial Turbine Performance Test with Different Incidence Angle (입사각 변경에 따른 단단 3차원 축류형 터빈의 성능시험에 관한 연구)

  • 조수용;박찬우
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.2
    • /
    • pp.24-31
    • /
    • 2001
  • An axial-type turbine design technology is developed. In order to design one-stage turbine, the preliminary design method is applied, and then design parameters are chosen after analyzing gas properties within the turbine passage using the streamline curvature method. Stator blade is designed using C4 profile, and rotor blade is designed using shape parameters. Stator is manufactured as an integral type and rotor is manufactured to be disassembled from the disc for changing blade incidence angle. The output power from the rotor is measured with various RPM and input power. Experimental results show that the maximum efficiency of turbine rotor is obtained on the design point, and the output power is proportionally decreased with the negative incidence angle even the test turbine is a reaction turbine. The efficiency of turbine rotor is decreased to 5% by $7.5^{\cire}$ negative incidence angle from the designed value.

  • PDF

A Study on Development for Wind Turbine Rotor Hub using Design of Shape Optimization (형상 최적설계법을 이용한 풍력발전기 로터 허브 개발에 관한 연구)

  • Kim, Young-Il;Moon, Sung-Young;Lee, Ji-Hyun;Lee, Yun-Sung;Moon, Byung-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.3
    • /
    • pp.59-64
    • /
    • 2011
  • Wind turbine frame will be required to be longer, lighter, more reliable and more consistent. Therefore it is necessary to lose weight of the wind turbine hub. Light-weight Design of a wind turbine is required to be at least 20 years. Therefore, this paper investigates the development for wind turbine rotor hub using design of topology optimization. The model is a pitch regulated wind turbine with three rotor blades where the main frame is made of nodular iron. For optimization, calculating stresses based on displacements and based on these data to carry out a verification of static and fatigue strength carried out. For this verification, two kind of analysis is used. One is static analysis and the other is fatigue analysis. Then the rotor hub of wind turbine frame is optimized using topology method.

Seismic Response Analysis of Steam Turbine-Generator Rotor System(1st Report, In case of rotor-bearing system only) (증기터빈$\cdot$발전기축계의 지진응답해석(제 1 보, 로터$\cdot$베어링시스템만을 고려한 경우))

  • 양보석;김용한
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.554-564
    • /
    • 1999
  • This paper presents the analytical method to evaluate the seismic responses on steam turbine-generator rotor system. Deterministic analytical methods, such as response spectrum approach, modal superposition method and direct integration method, are used to calculate the seismic response. The computer software is also developed based on the methods then can be applied to estimate the seismic safety of turbine-generator rotor system for power plants. Numerical example of a steam turbine-generator rotor system of 1007MW nuclear power plant is presented. The aseismatic performance are checked by comparing maximum seismic deflection at bearing positions with bearing clearance.

  • PDF

Flow-driven rotor simulation of vertical axis tidal turbines: A comparison of helical and straight blades

  • Le, Tuyen Quang;Lee, Kwang-Soo;Park, Jin-Soon;Ko, Jin Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.257-268
    • /
    • 2014
  • In this study, flow-driven rotor simulations with a given load are conducted to analyze the operational characteristics of a vertical-axis Darrieus turbine, specifically its self-starting capability and fluctuations in its torque as well as the RPM. These characteristics are typically observed in experiments, though they cannot be acquired in simulations with a given tip speed ratio (TSR). First, it is shown that a flow-driven rotor simulation with a two-dimensional (2D) turbine model obtains power coefficients with curves similar to those obtained in a simulation with a given TSR. 3D flow-driven rotor simulations with an optimal geometry then show that a helical-bladed turbine has the following prominent advantages over a straight-bladed turbine of the same size: an improvement of its self-starting capabilities and reduced fluctuations in its torque and RPM curves as well as an increase in its power coefficient from 33% to 42%. Therefore, it is clear that a flow-driven rotor simulation provides more information for the design of a Darrieus turbine than a simulation with a given TSR before experiments.

Structural design methodology for lightweight supporting structure of a multi-rotor wind turbine

  • Park, Hyeon Jin;Oh, Min Kyu;Park, Soonok;Yoo, Jeonghoon
    • Wind and Structures
    • /
    • v.34 no.3
    • /
    • pp.291-301
    • /
    • 2022
  • Although mostly used in wind turbine market, single rotor wind turbines have problems with transportation and installation costs due to their large size. In order to solve such problems, multi-rotor wind turbine is being proposed; however, light weight design of multi-rotor wind turbine is required considering the installation at offshore or deep sea. This study proposes the systematic design process of the multi-rotor wind turbine focused on its supporting structure with simultaneous consideration of static and dynamic behaviors in an ideal situation. 2D and successive 3D topology optimization process based on the density method were applied to minimize the compliance of supporting structure. To realize the conceptual design obtained by topology optimization for manufacturing feasibility, the derived 3D structure was modified to have shell structures and optimized again through parametric design using the design of experiments and the response surface method for detail design of their thicknesses and radii. The resultant structure was determined to satisfy the stress and the buckling load constraint as well as to minimize the weight and the resultant supporting structure were verified numerically.

Design and Flow Analysis on the 1kW Class Horizontal Axis Wind Turbine Rotor Blade for Use in Southwest Islands Region (서남권 도서지역에 적합한 1kW급 수평축 풍력터빈 로터 블레이드 설계 및 유동해석)

  • Lee, Jun-Yong;Choi, Nak-Joon;Yoon, Han-Yong;Cho, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.3
    • /
    • pp.5-11
    • /
    • 2012
  • This study is to develop a 1kW-class horizontal axis wind turbine(HAWT) rotor blade which will be applicable to relatively low wind speed regions in southwest islands in Korea. Shape design of 1kW-class small wind turbine rotor blade is carried out using a blade profile with relatively high lift to drag ratio by blade element momentum theory(BEMT). Aerodynamic analysis on the newly designed rotor blade is performed with the variation of tip speed ratio. Power coefficient and pressure coefficient of the designed rotor blade are investigated according to tip speed ratio.