• 제목/요약/키워드: turbine modelling

검색결과 61건 처리시간 0.029초

Exploring market uncertainty in early ship design

  • Zwaginga, Jesper;Stroo, Ko;Kana, Austin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.352-366
    • /
    • 2021
  • To decrease Europe's harmful emissions, the European Union aims to substantially increase its offshore wind energy capacity. To further develop offshore wind energy, investment in ever-larger construction vessels is necessary. However, this market is characterised by seemingly unpredictable growth of market demand, turbine capacity and distance from shore. Currently it is difficult to deal with such market uncertainty within the ship design process. This research aims to develop a method that is able to deal with market uncertainty in early ship design by increasing knowledge when design freedom is still high. The method uses uncertainty modelling prior to the requirement definition stage by performing global research into the market, and during the concept design stage by iteratively co-evolving the vessel design and business case in parallel. The method consists of three parts; simulating an expected market from data, modelling multiple vessel designs, and an uncertainty model that evaluates the performance of the vessels in the market. The case study into offshore wind foundation installation vessels showed that the method can provide valuable insight into the effect of ship parameters like main dimensions, crane size and ship speed on the performance in an uncertain market. These results were used to create a value robust design, which is capable of handling uncertainty without changes to the vessel. The developed method thus provides a way to deal with market uncertainty in the early ship design process.

Simulink에서 영구자석 동기형 풍력발전시스템의 전압변동에 대한 시뮬레이션 (Simulation for Voltage Variation of a Permanent Magnetic Synchronous Generator Wind Turbine Systems on Simulink)

  • 안해준;김현구;김홍우;장길수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.184.2-184.2
    • /
    • 2010
  • This study performs modelling and simulation of permanent magnetic synchronous generator wind turbine by using Matlab & Simulink. In simulation, change of wind velocity, change of load, and voltage decrease of infinite bus are performed. Through such simulation, different with wiring system that there is only existing load, this study can confirm problems and voltage changing characteristics, which can occur in distributed electric power that load and electric power is mixed and operated, especially, in interconnecting with wind power generation.

  • PDF

풍력발전용 모형터빈에 관한 기초적연구 (A Fundamental Study on Wind Turbine Model of the Wind Power Generation)

  • 김정환;남청도;김윤해;이영호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.1014-1019
    • /
    • 2001
  • A numerical investigation was performed to determine the effect of airfoil on the optimum flap height using NACA 00XX and 44XX airfoils. The six flaps which have 0.5% chord height difference were selected. A Navier-Stokes code, FLUENT, was used to calculate the flow field of the airfoil. The code was first tested as a benchmark by modelling flow around a NACA 4412 airfoil. Predictions of local pressure coefficients are found to be in good agreement with the result of the experimental result. For every NACA 00XX and 44XX airfoil, flap heights ranging from 0.0% to 2.5% chord were changed by 0.5% chord interval and their effects were also studied. Representative results from each case are presented graphically and discussed. It is concluded that this initial approach gives an idea for the future development of the wind turbine optimum design.

  • PDF

풍력발전용 공기터빈의 최적설계에 관한 기초 연구 (A Basis Study on Optimum Design of Air Turbine for Wind Power Generation)

  • 김정환;김범석;김윤해;남청도;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권5호
    • /
    • pp.1091-1097
    • /
    • 2001
  • A numerical investigation was performed to determine the effect of airfoil on the optimum flap height using NACA 00XX and 44XX airfoils. The six flaps which have 0.5% chord height difference were selected . A Navier-Stokes code, FLUENT, was used to calculate the flow field of the airfoil. The code was first tested as a benchmark by modelling flow around a NACA 4412 airfoil. Predictions of local pressure coefficients are found to be in good agreement with the result of the experimental results. For every NACA 00XX and 44XX airfoil, flap heights ranging from 0.0% to 2.5% chord were changed by 0.5% chord interval and their effects were also studied. Representative results from each case are presented graphically and discussed. It is conclued that this initial approach gives an idea for the future development of the wind turbine optimum design.

  • PDF

강인한 2자유도 다변수 보일러-터빈 시스템의 설계 (A Design on Robust Two-Degree-of-Freedom Multivariable Boiler-Turbine System)

  • 황창선;김동완;정호성;이두영;조규열;남경원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.670-672
    • /
    • 1995
  • This paper deals with the robust two-degree-of-freedom multivariable control system using $H_{2}/H{\infty}$optimization method which can achieve the robust stability and the robust performance, simultaneously. The feedback controller can obtain the robust stability property. The feedforward controller can obtain the robust performance property under modelling error. The robust two-degree-of-freedom multivariable control system is applied to the nonlinear multivariable boiler-turbine system. The validity of the proposed method is verified though being compared with LQG/LTR design method.

  • PDF

풍력발전용 터빈의 최적설계에 관한 기초 연구(II) (A Basis Study on Optimum Design of Turbine for Wind Power Generation(II))

  • 김정환;김범석;김춘식;김진구;이영호
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2001년도 춘계학술대회 논문집
    • /
    • pp.58-62
    • /
    • 2001
  • A numerical investigation was performed to determine the effect of airfoil on the optimum flap. height using NACA 0006, 0009, 0012, 0015, 0018, 0021 and 0024 airfoils. The six flaps which have 0.5% chord height difference were used. A Navier-Stokes code, FLUENT, was used to calculate the flow field of the airfoil. The code was first tested as a benchmark by modelling flow around a NACA 4412 airfoil. Predictions of local pressure coefficients are found to be in good agreement with the result of the experimental result. For every NACA 00XX airfoil, flap heights ranging from 0.0% to 2.5% chord were changed by 0.5% chord interval and their effects were also studied. Representative results from each case are presented graphically and discussed. It is concluded that this initial approach gives a promise for the future development of wind turbine optimum design.

  • PDF

초음속 충동형 터빈익형의 공력성능 향상을 위한 기하학적 설계변수 수치연구 (Numerical Investigation of Geometrical Design Variables for Improvement of Aerodynamic Performance of Supersonic Impulse Turbine)

  • 이은석;김진한;조광래
    • 한국항공우주학회지
    • /
    • 제31권8호
    • /
    • pp.99-106
    • /
    • 2003
  • 본 논문에서는 액체추진로켓용 터보펌프내 초음속 충동형 터빈의 공력성능 향상을 위해 기하학적 설계변수를 수치적으로 연구하였다. 터빈의 기하학적 설계변수는 아랫면, 윗면 원호반경, 입사각, 익단두께로 설정, 적절한 구속조건을 도입하였고 목적함수로는 최대파워를 채택하였다. 목적함수를 얻기 위해 2-D Navier-Stokes 방정식과 Chien의 k-$\varepsilon$ 난류 모델링을 수치적으로 계산하였다. 초기모델에서 이형 중앙부에 흐름박리를 볼 수 있었으나 개선된 익형에서 흐름박리는 제거되었다. 본 연구를 통해 약 3.2 %의 축 파워가 증대되었다.

영구자석 동기형 풍력발전시스템 모델링 및 전압변동 시뮬레이션 (Modeling and Voltage Variation Simulation of a Permanent Magnetic Synchronous Generator Wind Turbine Systems)

  • 김홍우;안해준;장길수;김성수;고희상
    • 조명전기설비학회논문지
    • /
    • 제23권8호
    • /
    • pp.116-123
    • /
    • 2009
  • 본 연구는 Matlab & Simulink에서 영구자석 동기형 풍력발전기(Permanent Magnetic Synchronous Generator Wind Turbine)모델링과 시뮬레이션을 수행한다. 모의실험으로는 풍속의 변동, 부하의 변동, 그리고 무한모선의 전압강하가 수행되었다. 이러한 모의실험을 통해 기존의 부하만이 존재하는 배전계통과는 달리 부하와 전원이 혼재되어 운용되는 분산전원 특히 풍력발전 계통연계시 발생할 수 있는 문제점과 전압변동 특성을 확인할 수 있었다.

On the nonlinear structural analysis of wind turbine blades using reduced degree-of-freedom models

  • Holm-Jorgensen, K.;Staerdahl, J.W.;Nielsen, S.R.K.
    • Structural Engineering and Mechanics
    • /
    • 제28권1호
    • /
    • pp.107-127
    • /
    • 2008
  • Wind turbine blades are increasing in magnitude without a proportional increase of stiffness for which reason geometrical and inertial nonlinearities become increasingly important. Often these effects are analysed using a nonlinear truncated expansion in undamped fixed base mode shapes of a blade, modelling geometrical and inertial nonlinear couplings in the fundamental flap and edge direction. The purpose of this article is to examine the applicability of such a reduced-degree-of-freedom model in predicting the nonlinear response and stability of a blade by comparison to a full model based on a nonlinear co-rotating FE formulation. By use of the reduced-degree-of-freedom model it is shown that under strong resonance excitation of the fundamental flap or edge modes, significant energy is transferred to higher modes due to parametric or nonlinear coupling terms, which influence the response and stability conditions. It is demonstrated that the response predicted by such models in some cases becomes instable or chaotic. However, as a consequence of the energy flow the stability is increased and the tendency of chaotic vibrations is reduced as the number of modes are increased. The FE model representing the case of infinitely many included modes, is shown to predict stable and ordered response for all considered parameters. Further, the analysis shows that the reduced-degree-of-freedom model of relatively low order overestimates the response near resonance peaks, which is a consequence of the small number of included modes. The qualitative erratic response and stability prediction of the reduced order models take place at frequencies slightly above normal operation. However, for normal operation of the wind turbine without resonance excitation 4 modes in the reduced-degree-of-freedom model perform acceptable.

A Study on Non Destructive Evaluation of the Steam Turbine L-0 Blades

  • Mizanur, Rahman Md.;Rezk, Osama;Ouma, Victor Otieno;Vaysidin, Saidov;Gomaa, M. Abdullatif;Jung, JaeCheon;Lee, YongKwan
    • 시스템엔지니어링학술지
    • /
    • 제12권1호
    • /
    • pp.59-71
    • /
    • 2016
  • The Nuclear and Fossil Steam Turbines record a considerable number of failures annually. Some of these failures reported are as result of blade failure. The failure of the L-0 blade in a Steam Turbine is one of the most reported blade failure in Nuclear and Fossil steam turbines. This paper seeks to identify the best Non Destructive Evaluation (NDE) method or methods to be used in the steam turbine L-0 blades inspection process. The development of systems engineering processes presents an opportunity to apply NDE inspection to the L-0 blades. This process apply computer modelling of the L-0 using ANSYS and by simulating the stresses experienced by the L-0 blade during operation it is possible to identify the most susceptible areas for crack formation and growth. The results from these models compared to industry data for validation. The analysis of these results used to predict the most probable failure location and failure modes. Therefore NDE inspection can be applied to these areas with greater degree of accuracy. This would be beneficial in the increasing the accuracy in the detection of cracks and hence save inspection time and the overall inspection cost. Furthermore, not only the location for crack formation and NDE inspection determined but also best the NDE inspection technique/techniques to be applied appropriately on the L-0 blade are prescribed.