DOI QR코드

DOI QR Code

Numerical Investigation of Geometrical Design Variables for Improvement of Aerodynamic Performance of Supersonic Impulse Turbine

초음속 충동형 터빈익형의 공력성능 향상을 위한 기하학적 설계변수 수치연구

  • Published : 2003.10.01

Abstract

Geometrical design variables are numerically investigated to improve aerodynamic performance of the supersonic impulse turbine of a turbopump in a liquid rocket engine. Aerodynamic redesign was performed for maximization of the blade power. Four design variables considered are blade angle, blade thickness and radii of upper and lower arc blade with appropriate constraints. A fast Navier-Stokes solver was developed and Chien's k-$\varepsilon$ turbulence modelling was used for turbulence closure. In initial shape, a flow separation was found in the middle of blade chord. However, it disappeared in final shape via its geometrical design variable change. About 3.2 percent of blade power was increased from this research.

본 논문에서는 액체추진로켓용 터보펌프내 초음속 충동형 터빈의 공력성능 향상을 위해 기하학적 설계변수를 수치적으로 연구하였다. 터빈의 기하학적 설계변수는 아랫면, 윗면 원호반경, 입사각, 익단두께로 설정, 적절한 구속조건을 도입하였고 목적함수로는 최대파워를 채택하였다. 목적함수를 얻기 위해 2-D Navier-Stokes 방정식과 Chien의 k-$\varepsilon$ 난류 모델링을 수치적으로 계산하였다. 초기모델에서 이형 중앙부에 흐름박리를 볼 수 있었으나 개선된 익형에서 흐름박리는 제거되었다. 본 연구를 통해 약 3.2 %의 축 파워가 증대되었다.

Keywords

References

  1. Griffin, L. W. and Dorney, J. D.,"Simulations of Unsteady Flow Through the Fastrac Supersonic Turbine," Journal of Turbomachinery, Vol. 122, pp. 225-233, April 2000 https://doi.org/10.1115/1.555453
  2. 홍창욱, 김경호, “터보펌프 시스템용 충동형 터빈개발”, 고압터보펌프 개발 Workshop (민군겸용기술사업), 현대모비스 기술연구소, 7월 20011)
  3. Lee, E. S., " Rotor Cascade Shape Optimization with Unsteady Passing Wakes using Implicit Dual Time Stepping Method ," Ph.D. Thesis, Aerospace Engineering Dept., The Pennsylvania State University, 2000
  4. Jameson, A., Schmidt, W., and Turkel, E., "Numerical Solutions of the Euler Equations by Finite Volume Methods Using the Runge-Kutta Time-Stepping Schemes," AIAA paper No. 81-1259, 1981
  5. Pulliam, T. H. and Steger, J. L., "Implicit Finite-Difference Simulations of Three Dimensional Compressible Flows," AIAA Journal, Vol.18, No.2, pp.159-167, Feburuary 1980 https://doi.org/10.2514/3.50745
  6. Jameson, A., "Time Dependent Calculations Using Multigrid, with Applications to Unsteady Flows Past Airfoils and Wings," AIAA Paper 91-1596
  7. Turkel, E., Vasta, V. and Radespiel, R., "Precondotioning Methods for Low-Speed Flows," AIAA 96-2460-CP, 1996
  8. Chien, K-Y., "Prediction of Channel Boundary-Layer Flows with a Low Reynolds Number Turbulence Model," AIAA Journal, Vol. 20, pp. 33-38, 1982 https://doi.org/10.2514/3.51043
  9. Nichols, R. H., "A Two-equation Model for Compressible Floes," AIAA-90-0294, January 1990
  10. Hanjalic, K. and Launder, B. E., "Sensitizing the Dissipation Equation to Irrotationak Strains," Journal Fluid Engineering, Vol. 102, pp. 34-40, 1980 https://doi.org/10.1115/1.3240621
  11. Sahu, J. and Danberg, J. E., "Navier-Stokes Computations of Transonic Flows with a Two-Equation Turbulence Model," AIAA Journal, Vol. 25, No. 11, pp. 1744-1751, 1986
  12. Leonard, O. and Demeulenaere, A., "A Navier-Stokes Inverse Method Based on a Moving Blade Wall Strategy," ASME Paper 97-GT-416