• Title/Summary/Keyword: turbine

Search Result 5,659, Processing Time 0.039 seconds

Gas Turbine Core Technology Developments of Korea Aerospace Research Institute (한국항공우주연구원의 가스터빈 엔진 핵심기술 개발현황)

  • Kim, Chun Taek;Yang, Inyoung
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.277-278
    • /
    • 2015
  • Korea Aerospace Research Institute(KARI) has developed the gas turbine core technologies since 1989 and has built the infrastructure for the development of gas turbine. Efficiency and flow instability are the major research object in radial and axial compressors. For combustor, NOx reduction is major research object. KARI also has developed turbine cooling technology as well as turbine aerodynamic technology.

  • PDF

Study on the Closed-die Forging Process for Turbine Disk of Small Gas Turbine Engine (소형 가스터빈용 터빈 디스크의 형단조 공정 연구)

  • Kim, D.K.;Kim, Y.D.;Kim, D.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.427-430
    • /
    • 2007
  • Gas turbine disk components have been used by Ni-base superalloys which have high temperature strength for enduring stress induced by high speed rotation. This study introduced the overview of development strategy of precision forging of turbine disk and closed-die forging process for manufacturing good quality gas turbine disk. To make superior quality turbine disk, it is important to select optimal forging process conditions like preform shape, die shape and forging temperature etc. In this paper, closed-die forging process has been studied through the rigid-plastic finite element simulation. Proposed forging process can be used for the successful manufacturing of small-size gas turbine disk.

  • PDF

Demonstration of 10kw Wind Turbine System at the King Sejong Station (극한환경에서의 소형풍력발전 실증운전)

  • Kim, Seok-Woo;Kyong, Nam-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.25-30
    • /
    • 2006
  • 10kW wind turbine has been successfully commissioned at the King Sejong station in April, 2006. The wind turbine installed is a part of the R&D program for developing a solid wind/diesel hybrid power control system for a remote area such as Antarctica. At the same time, the current research aims to develop an anti-icing and de-icing technologies for a small wind turbine rated under 50kW. Since its commissioning, the turbine has generated about 500kWh for 47days without any system faults. Although sufficient data have not been obtained yet, any trouble has not occurred in the wind/diesel hybrid system based on the current analysis. Concerning on the environmental impact by the wind turbine operation, the turbine is installed within the station boundary in order to meet the Madrid protocol. Therefore, wind turbine operation meets the international requirements for preservation of antarctic ecosystem.

A Comparative Performance Test for Turbine in Wind Tunnel and Towing Tank (풍동과 예인 수조를 이용한 터빈 성능 비교 시험)

  • Kang, Jung-Min;Lee, Yeong-Ho;Lee, Kyu-Chan
    • New & Renewable Energy
    • /
    • v.7 no.4
    • /
    • pp.42-49
    • /
    • 2011
  • The objective of this paper is to suggest a new method of a wind turbine performance test. The performance test of a wind turbine is generally carried out in a wind tunnel. The test needs not only a high-accuracy measuring system but also durable structure to withstand high speed turbine rotation and wind flow. Therefore, we tried turbine performance test using a towing tank to improve stability and reliability. Because a turbine rotates more slowly and generates more torque in the water than in the wind tunnel under similarity conditions. In this study, we developed turbine performance test systems and verified the turbine test method using a towing tank through comparing results of the wind tunnel and the towing tank test.

PMSG Wind Turbine Simulation under the consideration of real characteristics (PMSG 풍력 터빈의 특성을 고려한 발전 시스템 시뮬레이션)

  • Sim, Junbo;Kim, Myungho;Park, Kihyeon;Han, Kyungseop
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.182.2-182.2
    • /
    • 2010
  • A various algorism has been studied to extract possibly every energy from a wind turbine in conjunction with the increase of concern about wind power system. In order to verify these control algorism, it is essential to make the most similar conditions to the real wind turbine's environment. Therefore, using separately excited DC motor a wind turbine the most similar to the real turbine is simulated. Tower shadow effect and Wind shear effect are considered as well as inertia emulation. For the control of Back-to-Back Converter Vector current control methods and space vector pulse width modulation are used and for reducing THD of grid current LCL filter is considered. This simulation results verified the energy produced by wind all flows into the utility under the consideration of the characteristics of a wind turbine. The result of this paper is expected to be used as a basic material for analyzing the characteristics of the wind turbine generator.

  • PDF

A new consideration for the heat transfer coefficient and an analysis of the thermal stress of the high-interim pressure turbine casing model (열전달계수에 대한 새로운 고찰 및 고-중압 터빈 케이싱 모형의 열응력 해석)

  • Um, Dall-Sun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.425-429
    • /
    • 2004
  • In real design of the high & interim pressure turbine casing, it is one of the important things to figure out its thermal strain exactly. In this paper, with the establishment of the new concept for the heat transfer coefficient of steam that is one of the factors in analysis of the thermal stress for turbine casing, an analysis was done for one of the high & interim pressure turbine casings in operating domestically. The sensitivity analysis of the heat transfer coefficient of steam to the thermal strain of the turbine casing was done with a 2-D simple model. The analysis was also done with switching of the material properties of the turbine casing and resulted in that the thermal strain of the turbine casing was not so sensitive to the heat transfer coefficient of steam. On the basis of this, 3-D analysis of the thermal strain for the high and interim pressure turbine casing was done.

  • PDF

Performance Improvement of a Micro Eco Cross-Flow Hydro Turbine

  • Kokubu, Kiyoshi;Kanemoto, Toshiaki;Son, Sung-Woo;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.7
    • /
    • pp.902-909
    • /
    • 2012
  • This study is aimed to develop a new type of micro cross-flow hydro turbine which has very simple structure and relatively high efficiency. Micro eco cross-flow hydro turbine (ECFT) is proposed to apply in the ranges of very low and middle specific speeds in order to extend the operational range of the turbine. In order to not only obtain a basic data for a new design method of ECFT but also improve the turbine efficiency, experiments and CFD analysis on the performance and internal flow characteristics of the turbine model are conducted. According to the present study results, anti-recirculation block (ARB) and relatively wide turbine width with high flow rate improve the turbine efficiency.

A Study on the Performance Analysis of Francis Hydraulic Turbine

  • Ha, Jin-Ho;Kim, Chul-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.7
    • /
    • pp.1052-1059
    • /
    • 2009
  • The effects of varying the inlet flow angle on the output power of a Francis hydraulic turbine were studied numerically and the result was compared to the experimental results conducted at Korea Institute of Energy Research to determine the brake power of the turbine for each set of operating conditions. The loss of mechanical power of the model turbine was determined by comparing the numerical and experimental results, and thus the turbine efficiency or energy conversion efficiency of the model turbine could be estimated. From the result, it was found that the maximum brake efficiency of the turbine is approximately 46% at an induced angle of 35 degrees. The maximum indicated mechanical efficiency of the turbine is approximately 93% at an induced angle of 25~30 degrees.

A Development of Turbine Simulator and Foundation Excitation Test (모사터빈 시험기 개발 및 기초가진 시험)

  • 김영철;이안성;김병옥;김영춘;우성현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.675-680
    • /
    • 2004
  • In this study, a turbine simuiator is designed and manufactured to investigate the transient response of an actual turbine. The rotor mass and bearing stiffness is reduced to 1/140 of its actual turbine. The dynamic characteristics of turbine simulator are similar to those of the actual turbine. The turbine simulator is excited by an electro-magnetic type exciter in the form of half sine wave. Duration time is con☞oiled by Sms, 10ms, and Isms, and maximum acceleration is applied by 3g. Foundation excitation test is performed in stationary condition and rotating condition(6000rpm). The test results can be used to verify the validif of the theoretical afproach for transient analysis of actual turbine.

  • PDF

Simulation Technique of Wind Turbine Dynamic Behavior using Multibody FEM Analysis (탄성 다물체 동역학 해석기법을 이용한 풍력터빈 드라이브트레인의 동특성 해석)

  • Lee, Seung-Kyu;Lim, Dong-Su;Park, Young-Su;Kim, Jin;Choi, Won-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.817-821
    • /
    • 2008
  • Wind turbine requires service life of about 20 years and each components of wind turbine requires high durability, because installation and maintenance costs are more expensive than generated electricity by wind turbine. So the design of wind turbine must be verified in various condition before production step. This paper demonstrates the application of a generic methodology, based on the flexible multibody simulation technique, for the dynamic analysis of a wind turbine and its drive train. The concern of the paper is the computation of dynamic loads of wind turbine in emergency-stop condition. The finite element model is used to analyse the dynamic behaviour of the wind turbine.

  • PDF