• Title/Summary/Keyword: turbidity

Search Result 1,713, Processing Time 0.033 seconds

Decision of Backwashing frequency and method on the GAC adsorber (입상활성탄 흡착지 운영에서 역세척 주기와 팽창률의 영향 평가)

  • Chae, Seon-Ha;Cho, Chang-Hyun;Lee, Hee-Dae;Wang, Chang-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.6
    • /
    • pp.753-762
    • /
    • 2010
  • The objective of this study was to evaluate the backwashing frequency and method on the Granular Activated Carbon (GAC) in G WTP. A backwashing period was determined as 50 days and 60 days, respectively. Prior to Backwashing by head loss build, biomass concentration in effluent as constant and DO concentration was maintained more than 11.5 mg/L in GAC bed. Peak turbidity of backwashing water was 73.6~303 NTU. Mean turbidity of backwashing water at initial 9 minute of backwash operation was 50.7~82.8 NTU. After 30 minute backwashing operation, final turbidity reaches approximately 10 NTU. The frequency of backwashing and turbidity of backwashing water overtime were evaluated. At 20days of backwashing frequency, the peak turbidity was 73 NTU and 42 NTU respectively when 10% and 25% of expansion of GAC were applied. At 14 minute of backwashing time, it was observed that turbidity of 10% expansion of GAC was higher than that of 20% expansion.

The Effects of Temperature, Coagulants, and Pre-chlorination on the Removal of Cryptosporidium and Giardia by Coagulation Process (응집침전공정에서 수온, 응집제 종류, 전염소 주입에 따른 크립토스포리 디움과 지아디아 제거 효율 변화에 관한 연구)

  • Park, Sang-Jung;Chung, Young-Hee;Chung, Hyen-Mi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.531-538
    • /
    • 2007
  • The effects of temperature, coagulants and pre-chlorination on the removal of turbidity and pathogenic protozoa by coagulation process were investigated using jar test of lab scale. In room temperature ($25^{\circ}C$), protozoa were removed over 1.0log at the proper concentration range of coagulants, and up to over 2log at the optimal concentration of coagulants. Considering the 1.5log target removal for Giardiain the processes of coagulation, sedimentation, and filtration, this results implies that the target could be satisfied. However, the removal of protozoa and turbidity was reduced, and optimal PAC concentration was narrowed in low turbidity and cold temperature ($5^{\circ}C$). These results suggest that the drop of coagulation efficiency may be occurred in winter if the conditions are not optimized. Despite the effect of water temperature, the relation of turbidity and protozoa removal appeared to be good. The various kinds of coagulants did not significantly affected for removals of turbidity and protozoa when the concentrations of $Al_2O_3$ were considered. Prechlorination did not increase or decrease the removal of turbidity and protozoa in optimum condition at room temperature, pH 7, 15mg/L of PAC concentration.

Hydrostatic Pressure Effects on Physical Properties of Ultrafiltrated Skim Milk in the Presence of EGTA (EGTA를 첨가한 한외여과 탈지유의 물성에 미치는 초고압의 영향)

  • ;C. Kanno;T. Hagiwara
    • Food Science of Animal Resources
    • /
    • v.21 no.1
    • /
    • pp.32-37
    • /
    • 2001
  • The study investigated the effects of protein concentration, EGTA and strength of hydrostatic pressure on pH, viscosity and turbidity for ultra filtrated skim milk retentates. The results showed that hydrostatic pressure treatments up to 600 MPa did not affect the viscosity of skim milk, while the turbidity of skim milk increased at higher than 200 MPa. Addition of EGTA caused reduction in turbidity of skim milk, two times (2SR) and three times (3SR) concentrated skim milk retentates. Viscosity for 2SR and 3SR increased proportionally to the amount of EGTA, but viscosity of skim milk was not influenced by EGTA. High pressure treatment also did not cause any difference in viscosity and turbidity of skim milk. However, this treatment decreased viscosity and turbidity for 2SR and 3SR. In particular, 200 MPa treatment showed to induce a higher decrease in turbidity compared with 400 MPa.

  • PDF

Analysis of Measuring Limit of Echo Sounding by Turbidity (탁도에 따른 Echo Sounder 관측 한계 분석)

  • Kim Yong-bo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.2
    • /
    • pp.197-203
    • /
    • 2005
  • Dredging and reclaiming on coast, harbor construction etc. of when construct, the interest about efficiency and accuracy of sounding by measurement condition very rise. However, there are only a few studies on the accuracy improvement concerning water depth sounding condition. In this study, among the precision decline main causes of sounding, 1 suggested the characteristics of sounding data acquired by echo sounder with increasing of turbidity and the critical turbidity range under a given transducer frequency. For this, I acquired sounding data by inputting turbidity inducer artificially in artificial water tank. And then achieved regression analysis. Conclusion are as following Sounding Capabilities can be divided into three ranges according to the turbidity . normal range, critical range and the range where data can not be obtained by an echo sounder. When the turbidity exceeds $217\~259$ NTU which was considered as critical range, depth sounding was impossible.

Flow regimes and water quality impact of turbidity current into a stratified reservoir (성층 저수지로 유입하는 탁류의 유동특성과 영향에 관한 연구)

  • Chung, Se-Woong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.269-272
    • /
    • 2002
  • Turbidity currents, often develop after heavy storm events, deliver various non-point pollutants and tend to lead eutrophication, depressed dissolved oxygen, and sedimentation in reservoirs. Field observations were performed to investigate the flow regimes of turbidity currents and their impact on reservoir water quality in Daecheong Reservoir. A 2D laterally-averaged hydrodynamic and water quality model was applied to simulate the temporal and spatial distributions of turbidity in the reservoir, and evaluated by comparing with the field data.

  • PDF

Polluted Water Treatment of Dam and Reservoir using Natural Korean Zeolite (천연 제올라이트 활용을 통한 댐 및 호소의 오염수 처리)

  • Park, Ki-Ho;Suh, Jin-Kook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.2
    • /
    • pp.113-120
    • /
    • 2005
  • Due to the Typhoon MAEMI on Sep. of 12 in 2003, the turbidity value of DOAM Dam was recorded more than 300NTU until now. The natural zeolite located in the east coast of Korean peninsula was applied to reduce turbidity with cation exchange process. The result of this technique, the value of turbidity was reduced less than 1NTU. Also the value of pH showed stable state compare to before and after.

  • PDF

Beverage Taste Perception Influenced by Its Turbidity: Results from Twenties and Thirties (탁도에 따른 음료의 미각 인지: 20, 30대 소비자를 중심으로)

  • Kim, Taesu;Choi, Kyungah;Suk, Hyeon-Jeong
    • Science of Emotion and Sensibility
    • /
    • v.20 no.2
    • /
    • pp.3-10
    • /
    • 2017
  • This research investigated the cross-modal correspondence between the turbidity and taste of beverages. For an empirical study, we employed two types of achromatic beverages: rice wine and a soft drink. The turbidity of each drink varied between 0.0625~32 g/L, and 0.0078~4 g/L, respectively, and the stimuli were prepared in ten levels according to cognitive turbidity. In the study, participants (N=35) rated each drink stimulus using a 3-point Likert scale with regard to five basic tastes: sweet, salty, bitter, sour, and preferred. In addition, six specific tastes were included that deliberately describe rice wine and the soft drink. Three were yeasty, alcoholic, and astringent for the rice wine, and the other three were creamy, bubbly, and syrupy for the soft drink. Based on participants' assessments, the turbidity of rice wine is highly positively correlated with all five basic tastes. In contrast, the turbidity of the soft drink was positively correlated with sour only. Concerning preference, the most preferred turbidity of rice wine was 4.6~20 g/L, which is close to the turbidity of existing products on the market. Furthermore, except for astringent and syrupy, all tastes were influenced by the turbidity, which implies the potential of turbidity as a new visual parameter to communicate the taste experience of beverages.

Prediction of Alkaline Copper Quat (ACQ) Wood Preservative Concentration by Turbidity (탁도에 의한 구리·알킬암모늄화합물계 목재방부제(ACQ)의 농도 예측)

  • Lee, Jong Shin;Kim, Kyoung Tae;Choi, Gwang Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.743-749
    • /
    • 2016
  • The concentration control of wood preservatives is necessary to produce a preservative treated wood having a uniform quality. Concentration measurement method of wood preservatives to be easily used in the field has not been developed yet. This study examined the way to estimate the concentration from turbidity of ACQ wood preservative that can be relatively easily measured by using a portable turbidity meter. The addition of phosphoric acid solution in an alkaline ACQ solution having a very low turbidity is created a suspension of the white substance and the turbidity suddenly increased. The optimum amount of addition of the phosphoric acid solution is until the pH of ACQ solution reaches 7, the turbidity of the ACQ solution reaches maximum value. Excessive addition of the phosphoric acid solution results in a turbidity decrease with acidification of the ACQ solution. Also ACQ solution becomes transparent. The high significance was recognized with positive correlation between the concentration and the turbidity of the ACQ solution. From the t-test, The significant difference between the actually measured concentrations and the concentrations predicted by the regression equation for industrial ACQ solutions was not recognized. Thus, it was possible to know that concentration prediction and control of industrial ACQ solution using the turbidity and a regression equation. Therefore, using the regression equation and turbidity is expected to be able to management the concentration of ACQ solution in the industrial field.

A study on the relationship between concentration of phosphorus, turbidity, and pH in water and soil (물과 토양에서 인의 농도, 탁도 그리고 pH와의 관계에 관한 연구)

  • Min, Young-Hong;Hyun, Dae-Yoeung;Eum, Chul-Hun;Lee, Seung-Ho
    • Analytical Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.304-309
    • /
    • 2011
  • In this research, behaviour of turbidity and phosphorus in water and soil dependent upon pH and a change of water was studied. Phosphorus dissolve rate from turbidity was increased for water if potential of hydrogen was less than pH 4 or more than pH 7. Turbidity release rate from soil was increased with pH. Turbidity release rate from soil was drastically increased for water if potential of hydrogen was more than pH 4. turbidity release rate from soil was stabilized more than pH 6. Dissolved phosphorus was increased from 2 hours to 24 hours and stabilized in 24 hours. Turbidity was reached the peak of 24 hours and decreased from 24 hours to 96 hours. Turbidity and dissolved phosphorus was decreased for water if these samples were changed a overlying water. Behaviour of turbidity was analogous to dissolved phosphorus when potential of hydrogen was increased from pH 6 to pH 10 and a change of overlying water was increased from 1 time to 4 times. These results suggest that phosphorus dissolve rate and turbidity were directiy correlated with pH. These results are of great importance in lakes because most lakes have a pH in the range of pH 7-10.

Daily Variations of Water Turbidity and Particle Distribution of High Turbid-Water in Paltang Reservoir, Korea (팔당호에서 수중 탁도의 일 변동과 고탁수의 입자 분포)

  • Shin, Jae-Ki;Kang, Chang-Keun;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.257-268
    • /
    • 2003
  • Daily monitoring was conducted to elucidate the changes in turbidity and distribution of particles in the turbid water of a river-type reservoir (Paltang Reservoir) from 1999 to 2001. Water turbidity and the particle distribution of turbid water were principally affected by meteorological factors particularly rainfall patterns and hydrological factors such as inflow and outflow. The mean concentration of turbidity was constant each year, with the concentration of less than 10 NTU accounting for 85%. Seasonal characteristics were remarkable, with winter and spring having < 5 NTU, autumn 5 ${\sim}$ 10 NTU, and summer > 20 NTU. Unlike hydrological changes, maximum turbidity was observed from late July to early August and continuously increased from 1999 to 2001. In particular, the maximum turbidity of reservoirs remarkably increased toward the lower part of reservoir in 2001. Discharge and turbidity increased or decreased slowly in 1999; in contrast, turbidity rapidly increased in the early rainfall period of 2000 and 2001 but later decreased as discharge increased. In the particles of turbid water, clay ingredients were more densely distributed and more dominant in all stations. Of the total particles in turbid water, clay constituted 63.9${\sim}$66.6% and silt 33.4${\sim}$36.1% to account for a combined total of 98.9 ${\sim}$ 100%. Sand made up less than 1.1%. The turbidity of river-type reservoir was also found to be mainly affected by the biomass of plankton in a non-rainfall period. During a rainfall period, however, the quantity and relative ratio of inorganic particles depending on the soil components affected turbidity.