• Title/Summary/Keyword: turanose

Search Result 13, Processing Time 0.02 seconds

Application of turanose as a cryoprotectant for the improvement of Baker's yeast storability (빵효모 저장성 향상을 위한 동결보호제로서의 투라노스 활용 연구)

  • Bae, Go-Eun;Choi, Seong-Won;Lee, Byung-Hoo;Yoo, Sang-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.2
    • /
    • pp.224-227
    • /
    • 2022
  • In this study, the protective effects of turanose on Saccharomyces cerevisiae (Baker's yeast) were examined during the freeze-drying process to evaluate the feasibility of utilizing turanose as a novel cryoprotectant. The survival rate of the Baker's yeast cells improved substantially with a cryoprotective medium containing turanose in a substitution-dependent manner. In accordance with these survival rates, the yeast cell surfaces became smoother as the turanose content increased. Turanose with skim milk maintained the viability of the Baker's yeast, which improved substantially upon storage at -20℃. Thus, it is thought that turanose will exhibit excellent preservation effects during the distribution of Baker's yeast. Finally, these results suggest that turanose has the potential to be used as a novel cryoprotectant against various microorganisms.

Acute and 13-week subchronic toxicological evaluations of turanose in mice

  • Chung, Joo-Yeon;Lee, Jihye;Lee, Daeyeon;Kim, Eunju;Shin, Jae-Ho;Seok, Pu Reum;Yoo, Sang-Ho;Kim, Yuri
    • Nutrition Research and Practice
    • /
    • v.11 no.6
    • /
    • pp.452-460
    • /
    • 2017
  • BACKGROUD/OBJECTIVES: Turanose, ${\alpha}$-D-glucosyl-($1{\rightarrow}3$)-${\alpha}$-D-fructose, is a sucrose isomer which naturally exists in honey. To evaluate toxicity of turanose, acute and subchronic oral toxicity studies were conducted with ICR mice. MATERIALS AND METHODS: For the acute oral toxicity study, turanose was administered as a single oral dose [10 g/kg body weight (b.w.)]. In the subchronic toxicity study, ICR mice were administered 0, 1.75, 3.5, and 7 g/kg b.w. doses of turanose daily for 13 weeks. RESULTS: No signs of acute toxicity, including abnormal behavior, adverse effect, or mortality, were observed over the 14-day study period. In addition, no changes in body weight or food consumption were observed and the median lethal dose (LD50) for oral intake of turanose was determined to be greater than 10 g/kg b.w. General clinical behavior, changes in body weight and food consumption, absolute and relative organ weights, and mortality were not affected in any of the treatment group for 13 weeks. These doses also did not affect the macroscopic pathology, histology, hematology, and blood biochemical analysis of the mice examined. CONCLUSION: No toxicity was observed in the acute and 13-week subchronic oral toxicology studies that were conducted with ICR mice. Furthermore, the no-observed-adverse-effect level is greater than 7 g/kg/day for both male and female ICR mice.

Analysis and Quantitation of Di- and Trisaccharides in Native-bee Honeys Using Capillary Gas Chromatography (Capillary GC를 이용한 토종꿀중의 Disaccharides 와 Trisaccharides의 분석)

  • Kim, Eun-Seon;Rhee, Chong-Ouk
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.605-611
    • /
    • 1995
  • Carbohydrase enzymes in honey catalyze transglucosylation reactions which result in the formation of structurally similar oligosaccharides. These oligosaccharides make up a small portion of the total carbohydrates in honey. These minor oligosaccharides in native-bee honeys were identified and quantitated employing trimethylsilylation by capillary Gas Chromatography. The minor oligosaccharides found in honey were eight disaccharides and five trisaccharides. The main oligosaccharide components of honey were erlose, maltose, turanose and sucrose.

  • PDF

Compositional changes in maesil-cheong formulated with turanose during the storage period (투라노스 당침을 통해 제조된 매실청의 저장기간 중 성분 함량 변화)

  • Kim, Jung-Geun;Yoo, Sang-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.688-694
    • /
    • 2021
  • Turanose is a potential candidate for use as a functional sweetener because of its gentle taste, low calorie, and non-cariogenicity. The aim of this study was to replace sucrose with turanose to produce health-beneficial maesil-cheong. Quality effects of turanose on maesil-cheong were evaluated by determining the contents of free sugars, organic acids, amygdalin, and antioxidant activity. The pH and Brix values of sucrose- and turanose-based maesil-cheong remained at the same level between 2.83 and 3.00 and 54.6-58.6°Bx, respectively, after 90-day storage. Among oxalic, malic, and citric acids, citric acid content was the highest in both maesil-cheong samples. Turanose did not significantly hydrolyze in maesil-cheong, whereas sucrose was completely hydrolyzed to glucose and fructose. Thus, turanose is suitable for the development of acidic maesil-cheong to improve its health promoting effect. Turanose showed product qualities similar to sucrose-based maesil-cheong. Turanose can be used as a functional sweetener or bulking agent in processed foods.

Identification of Key Metabolites Involved in Quantitative Growth of Pinus koraiensis trees (II) (잣나무 생장과 관련이 있는 주요 대사물질 인자(II))

  • Lee, Wi Young;Park, Eung-Jun;Kim, Hyun-Tae;Han, Sang Urk
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.2
    • /
    • pp.211-217
    • /
    • 2014
  • A metabolomic study using GC/MS analysis was conducted to identify key metabolic components regulating the growth of open-pollinated Pinus koraiensis families, which were grown for 29 years at three different locations. Among 110 individual metabolites identified, the contents of 62 metabolites were higher in the superior than in the inferior families (p<0.05), together with 22 metabolites, such as phosphoric acid, alanine, glycine, malic acid, and sucrose, being accumulated 1.5-fold higher in the superior families. In addition, 15 metabolites including alanine, malic acid, sucrose, d-turanose, and succinic acid showed positive correlation with the growth (p<0.01). Furthermore, the metabolites, of which contents were correlated with the growth but not significantly changed at different locations, were acetic acid, succinic acid, butanoic acid, glutamic acid, and inositol. Therefore we suggest that several metabolites selected in this study may be used as metabolic markers for quantitative growth trait in P. koraiensis.

Identification of Key Metabolites Involved in Quantitative Growth of Pinus koraiensis (잣나무의 생장특성과 관련있는 주요 대사물질 인자 구명)

  • Lee, Wi Young;Park, Eung-Jun;Han, Sang Urk
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.4
    • /
    • pp.640-647
    • /
    • 2012
  • A metabolomic study was conducted to identify key metabolic components, which are correlated with the growth of 4-year-old Pinus koraiensis seedlings harvested at actively height growing season (May 18th). Among 105 individual metabolites identified by GC/MS analysis, alanine, threonine, oleic acid, and butanoic acids were negatively correlated with both height and weight of 4-year-old seedlings, while malic acid, xylose, glucose, d-turanose and inositol had positive correlation with various growth parameters. During the actively growing season, the concentrations of both amino acids and organic acids in the main stem of Superior seedling group were lower but the photosynthates such as mono-saccharide and sucrose were higher than in other seedling groups such as Intermediate and Inferior. Interestingly, d-turanose, an analogue of sucrose that is not metabolized in higher plants but used as carbon source by many organisms including numerous species of bacteria and fungi, showed the highest correlation (r=0.896, p<0.001) with height of 4-year-old seedlings, indicating that possible interaction with mycorrhizal organisms. Therefore we suggest that several metabolites selected in this study may be used as metabolic markers for complex traits in P. koraiensis.

Chemical Characteristics of the Leaves and the Seeds of Korean Dendropanax (Dendropanax morbifera Lev.) (황칠나무 잎 및 종실의 화학적 특성)

  • Kim, Hyung-Ryang;Chung, Hee-Jong
    • Applied Biological Chemistry
    • /
    • v.43 no.1
    • /
    • pp.63-66
    • /
    • 2000
  • Proximate analyses of free sugars, free amino acids, fatty acids, total vitamin C and the soluble tannin content of the leaf and seed of Dendropanax morbifera Lev. were determined. Moisture content was 70.2% in leaf and 72.6% in seed, and crude protein contents were 1.2% in leaf and 6.2% in seed, and ash contents were 1.7% in leaf and 0.9% in seed. Total vitamin C and soluble tannin in leaf were 56.9% and 10.7% which were five times and eleven times higher in seed, respectively. Free sugar content in leaf was higher than that in seed, with the major free sugars consisting of sucrose, glucose and fructose. Turanose and xylose were not detected in leaf, but were detected in seed in small amounts. Unsaturated fatty acids were predominant in both of leaf and seed, but major fatty acids were quite different from each other. Low levels of free amino acids were found to consist mainly of arginine, aspartic acid and glutamic acid. The highest content of mineral elements in leaf and seed were calcium and potassium, respectively.

  • PDF

Characterization of Traditional Korean Unifloral Honey Based on the Mono-, Di-, and Trisaccharides (한국산 벌꿀의 밀원별 단당, 이당 및 삼당류의 정량 특성)

  • Jang, Eun-Sook;Kim, In-Suk;Lee, Eun-jin;Seo, Hyun-Sun;Lee, Hye-joung;Kim, Eun;Kim, Kyung-Tae;Kim, Jong-Bae
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Sugar profiles of 45 Korean honey samples (15 acacia, 15 multi-floral, 10 chestnut, and 5 artificial honey samples), which are commercially available in the Korean markets, were analyzed using gas chromatography/mass spectrometry (GC/MS) through TMS-oxime and TMS-methoxime derivatization. The average invert sugar contents in acacia, multi-floral, chestnut, and artificial honey samples were $71.2{\pm}1.05$, $68.7{\pm}3.26$, $63.2{\pm}1.85$, and $68.0{\pm}2.10%$, respectively. Fourteen disaccharides were detected from the samples, and the average content of major disaccharides was higher in order of turanose, maltulose, maltose, trehalulose, kojibiose, isomaltose, and nigerose. The average content of total disaccharides was highest in chestnut and lowest in acacia. Seven trisaccharides were detected from the samples, and the average content of trisaccharides was the highest in artificial honeys, which had high erlose content. The total content of disaccharides and trisaccharides was highest ($16.0{\pm}2.03%$) in chestnut honey and lowest ($9.70{\pm}1.75%$) in acacia honey.

Isolation and Taxonomical Characterization of Strain KM1-15 with Antibiotic Activity from Pine Mushroom (Tricholoma matsutake) Basal Soil (송이 자실체 기저부 토양으로부터 항균활성을 가지는 KM1-15 균주의 분리 및 분류학적 특성)

  • Kim, Yun-Ji;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.56-62
    • /
    • 2008
  • Two hundred and sixty-eight bacterial strains were isolated from pine mushroom (Tricholoma matsutake) basal soil. In the course of screening for antifungal activity against seven plant pathogenic fungi (Alternaria panax, Botrytis cinerea, Colletotrichum gloeosprioides, Fusarium oxysporum, Phytopthora capsici, Pythium ultimum, Rizoctonia solani) of isolates, strain KM1-15 showed strong antibiotic activity against Alternaria panax and Colletotrichum gloeosprioides. In determining its relationship on the basis of 16S rDNA sequence, KM1-15 strain was most closely related to Bacillus $koguryoae^T$ (AY904033) (99.62%). When assayed with the API 50CHE Kit, unlike Bacillus koguryoae, it is positive for utilization of L-arabinose, cellobiose, inulin, and D-turanose. Results of cellular fatty acid analysis showed that major cellular fatty acids were 15:0 anteiso (35.78%) and 17:0 anteiso (17.97%). In particular, hydroxyl fatty acids such as 13:0 iso 3-OH, 14:0 iso 3-OH, 15:0 iso 3-OH, and 17:0 iso 3-OH were only restricted to strain KM1-15. DNA G+C content was 43.7 mol% and quinone system was MK-7 (100%) in strain KM1-15.

Novel $\alpha$-Glucosidase from Extreme Thermophile Thermus caldophilus GK24

  • Nashiru, Oyekanmi;Koh, Suk-Hoon;Lee, Se-Yong;Lee, Dae-Sil
    • BMB Reports
    • /
    • v.34 no.4
    • /
    • pp.347-354
    • /
    • 2001
  • $\alpha$-Glucosidase of an extreme thermophile, Thermus caldophilus GK24 (TcaAG), was purified 80-fold from cells to a homogeneous state and characterized. The enzyme exhibited optimum activity at pH 6.5 and $90^{\circ}C$, and was stable from pH 6.0 to 85 and up to $90^{\circ}C$. The enzyme had a half-life of 85 minutes at $90^{\circ}C$. An analysis of the substrate specificity showed that the enzyme hydrolyzed the non-reducing terminal unit of $\alpha$-1,6-glucosidic linkages of isomaltosaccharides and panose, $\alpha$-1,3-glycosidic bond of nigerose and turanose, and $\alpha$-1,2-glycosidic bond of sucrose. The gene encoding the TcaAG was cloned, sequenced, and sequenced in E. coli. The nucleotide sequence of the gene encoded a 530 amino acid polypeptide and had a G+C content of 68.4% with a strong bias for G or C in the third position of the codons (93.6%). A sequence analysis revealed that TcaAG belonged to the $\alpha$-amylase family. We suggest that this monomeric, thermostable, and broad-acting $\alpha$-glucosidase is a departure from previously exhibited specificities. It is, therefore, a novel $\alpha$-glucosidase.

  • PDF