Browse > Article
http://dx.doi.org/10.14578/jkfs.2014.103.2.211

Identification of Key Metabolites Involved in Quantitative Growth of Pinus koraiensis trees (II)  

Lee, Wi Young (Division of Forest Biotechnology, Korea Forest Research Institute)
Park, Eung-Jun (Division of Forest Biotechnology, Korea Forest Research Institute)
Kim, Hyun-Tae (Division of Forest Biotechnology, Korea Forest Research Institute)
Han, Sang Urk (Division of Forest Tree Improvement, Korea Forest Research Institute)
Publication Information
Journal of Korean Society of Forest Science / v.103, no.2, 2014 , pp. 211-217 More about this Journal
Abstract
A metabolomic study using GC/MS analysis was conducted to identify key metabolic components regulating the growth of open-pollinated Pinus koraiensis families, which were grown for 29 years at three different locations. Among 110 individual metabolites identified, the contents of 62 metabolites were higher in the superior than in the inferior families (p<0.05), together with 22 metabolites, such as phosphoric acid, alanine, glycine, malic acid, and sucrose, being accumulated 1.5-fold higher in the superior families. In addition, 15 metabolites including alanine, malic acid, sucrose, d-turanose, and succinic acid showed positive correlation with the growth (p<0.01). Furthermore, the metabolites, of which contents were correlated with the growth but not significantly changed at different locations, were acetic acid, succinic acid, butanoic acid, glutamic acid, and inositol. Therefore we suggest that several metabolites selected in this study may be used as metabolic markers for quantitative growth trait in P. koraiensis.
Keywords
Pinus koraiensis; metabolite; metabolic marker; tree breeding; growth;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Fernie1, A.R. and Schauer, N. 2008. Metabolomics-assisted breeding: a viable option for crop improvement? Trends in Genetics 25: 39-48.
2 Greenwood, M.S. and Volkaert, H.A. 1992. Morphophysiological traits as markers for the early selection of conifer genetic families. Canadian Journal of Forest Research 22: 1001-1008.   DOI
3 Han, S.U. and Lee, J.S. 1995. Estimate of early selection effiency for height growth using age-age correlation in Pinus koraiensis. Journal of Korean Forest Society 84(3): 356-360.
4 Kerwin, R.E., Jimenez-Gomez, J.M., Fulop, D., Harmer, S.L., Maloof, J.N., and Kliebenstein, D.J. 2011. Network quantitative trait loci mapping of circadian clock outputs identies metabolic pathway-to-clock linkages in arabidopsis. Plant Cell 23: 471-485.   DOI   ScienceOn
5 Kim, D.E. and Chon, S.K. 1990. Trens in genetic parameters with age and site for early implications of genetic improvement in Korean white pine. Journal of Korean Forestry Society 79(1): 56-70.
6 Korn, M., Gartner, T., Erban, A., Kopka, J., Selbig, J., and Hincha, D.K. 2010. Predicting arabidopsis freezing tolerance and heterosis in freezing tolerance from metabolite composition. Molecular Plant 3(1): 224-235.   DOI   ScienceOn
7 Ossipov, V., Ossipova, S., Bykov, V., Oksanen, E., Koricheva, J. and Haukioja, E. 2008. Application of metabolomics to genotype and phenotype discrimination of birch trees grown in a long-term open-field experiment. Metabolomics 4: 39-51.   DOI   ScienceOn
8 Robinson, A.R., Gheneim, R., Kozak, R.A., Ellis, D.D., and Mansfield, S.D. 2005. The potential of metabolite profiling as a selection tool for genotype discrimination in Populus. Journal of Experimental Botany 56: 2807-2819.0-647.   DOI   ScienceOn
9 Sinha, A.K., Hofmann, M.G.,, Romer, U., Kockenberger, W., Elling, L., and Roitsch, T. 2002. Metabolizable and nonmetabolizable sugars activate different signal transduction pathways in tomato. Plant Physiol 128: 1480-1489.   DOI   ScienceOn
10 Schauer, N., Semel, Y., Roessner, U., Gur, A., Balbo, I., Carrari, F., Pleban, T., Perez-Melis, A., Bruedigam, C., Kopka, J., Willmitzer, L., Zamir, D., and Fernie, A.R. 2006. Comprehensive metabolic proling and phenotyping of interspecic introgression lines for tomato improvement. Nature Biotechnology 24: 447-454.   DOI   ScienceOn
11 Stevenson, J.M., Perera, I.Y., Heilmann, I., Persson, S., and Boss, W.F. 2000. Inositol signaling and plant growth. Trends in Plant Science Reviews 5: 252-258.   DOI   ScienceOn
12 Thissen, U., Coulier, L., Overkamp, K.M., Jetten, J., Van der Werf, B.J.C., Van de Ven, T., and Van der Werf, M.J. 2011. A proper metabolomics strategy supports efficient food quality improvement: A case study on tomato sensory properties. Food Quality and Preference 22: 499-506.   DOI   ScienceOn
13 Lee, W.Y, Park, E.J., and Han, S.U. 2012. Identification of Key Metabolites Involved in Quantitative Growth of Pinus koraiensis. Journal of Korean Forest Society 101(4): 640-647.
14 Meyer, R.C., Steinfath, M., Lisec, J., Becher, M., Witucka-Wall, H., Torjek, O., Fiehn, O., Eckardt, A., Willmitzer L., Selbig, J., and Altmann, T. 2007. The metabolic signature related to high plant growth rate in Arabidopsis thaliana. Proceeding of National Academic Science USA 104: 4759-4764.   DOI   ScienceOn
15 Nicholson, J.K. and Lindon, J.C. 2008. Metabonomics. Nature 455: 1054-1056.   DOI   ScienceOn
16 Okazaki, Y. and Saito, K. 2012. Recent advances of metabolomics in plant biotechnology. Plant Biotechnology Report 6: 1-15.   DOI
17 Lee, W.Y. and Han, S.U. 2012. Identification of key metabolites in the regulation of metabolism and clonal growth of Populus davidiana Dode. Korean Journal of Breeding Science 44(3): 318-327.
18 Lee, W.Y, Park, E.J., and Han, S.U. 2010. Correlation of growth performance with total nitrogen, carbon and nitrogen isotope compositions in the xylem of Pinus koraiensis. Journal of Korean Forest Society 99(3): 353-358.   과학기술학회마을
19 Lisec, J., Meyer, R.C., Steinfath, M., Redestig, H., Becher, M., Witucka-Wall, H., Fiehn, O., Torjek, O., Selbig, J., Altmann, T., and Willmitzer, L. 2008. Identication of metabolic and biomass QTL in Arabidopsis thaliana in a parallel analysis of RIL and IL populations. Plant Journal 53: 960-972.
20 Viant, M.R. 2008. Recent developments in environmental metabolomics. Molecular BioSystems 4: 980-986.   DOI   ScienceOn
21 Yi, J.S., Song, J.H., and Han, S.U. 2007. Estimate of early selection using age-age correlation by stem analysis in Pinus koraiensis. Korea White Pine 2: 51-61.
22 Dinant, S. and Lemoine, R. 2010. The phloem pathway: new issues and old debates. Comptes Rendus biologie. 333: 307-319.   DOI   ScienceOn
23 Fernie, A.R. and Schauer, N. 2009. Metabolomics-assisted breeding: a viable option for crop improvement? Trends Genetic 25: 39-48.   DOI   ScienceOn
24 Kozlowski, T.T., Kramer, P.J., and Pallardy, S.G. 1991. The physiological ecology of woody plants. Academic Press. pp. 13-15.