• Title/Summary/Keyword: tunnelling construction projects

Search Result 33, Processing Time 0.022 seconds

A Study on Application Methods of Satellite Images for the Construction Projects over Extreme Cold Regions -Focus on the Construction Case of 2nd Antarctic Base- (극한지 건설사업 진출을 위한 위성영상 활용방안 연구 -남극 제2기지 건설 사례를 중심으로-)

  • Hong, Chang-Hee;Kim, Tae-Hoon;Bae, Gyu-Jin
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.4
    • /
    • pp.148-156
    • /
    • 2010
  • For the reasons such as resource development, an interest in the extreme cold regions has been increasing in recent years. Therefore, this study aims to suggest the application methods of satellite images for the construction projects over extreme cold regions. Because extreme cold regions including the Antarctic is generally far and difficult to access, the satellite images are useful to monitor the extreme cold regions. In this study, satellite images can be used in the overall construction process and the application methods presented through the review of the case studies and the related literature.

Case study: application of NAT (New Abrasion Tester) for predicting TBM disc cutter wear and comparison with conventional methods (TBM 디스크 커터 마모 예측에 대한 NAT의 현장 적용 및 기존 방법과의 비교)

  • Kim, Dae-Young;Shin, Young-Jin;Jung, Jae-Hoon;Kang, Han-Byul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1091-1104
    • /
    • 2018
  • Wear prediction of TBM disc cutters is a very important issue during design as well as construction stages for hard rock TBMs as the cutter head intervention is directly related to the time and cost of tunneling. For that, some methods such as NTNU, CSM and Gehring models were used to predict disc cutter wear and intervention interval. There are however some problems to be addressed in these models in terms of accuracy and time for testing, so that a NAT (New Abrasion Tester) model has been developed in order to achieve simplicity and reliability together at the same time (Farrokh and Kim, 2018). On the basis, the proposed NAT model has been applied to ${\bigcirc}{\bigcirc}$ project in Korea. A comparative study was performed to compare with the conventional methods and as a result the NAT model showed a very good agreement with actual cutter life. The NAT model will be further applied to other projects to establish credibility.

Study on the optimal construction of a concrete lining in a weathered rock (풍화암지반에 시공되는 콘크리트라이닝의 적정시공에 관한 연구)

  • Kim, Hyeongkeon;Lee, Chul;Lee, Sun-Woo;Park, Jun-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.1
    • /
    • pp.33-47
    • /
    • 2015
  • Concrete lining in tunnel construction is used as secondary support for downward loads when primary support decays. The use of concrete lining varies greatly depending on the intentions of engineer and/or client. An engineer uses much smaller deformation modulus which determines the concrete lining thickness than of a pattern 3, when supporting patterns 4 and 5 are used in a weathered rock and soil. Considering these conditions, this study intends to suggest optimal construction procedures through a back analysis using a computer program(MIDAS-civil). Cases of Seoul Subway System line${\bigcirc}{\bigcirc}$ zone${\bigcirc}{\bigcirc}$ were selected to be examined for this study. The results show that it is possible to reduce the thickness of concrete lining. When results from this study were applied to Seoul Metropolitan subway construction projects, it is expected to bring economic benefits.

Modern High-Power TBM with Advanced Procurement System (오늘날의 고성능 TBM과 선진 장비조달 방안)

  • Jee, Warren W.
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.161-168
    • /
    • 2013
  • Recently, the application of High-Power mechanized tunnelling technology has been expended around the world. Especially, High-power Modern TBM machines are used in a successful results. Essential for the great success of this modern TBM in difficult rock conditions are based on the development of machine power, suitable better cutter developments, and also developed assesment technology regards on the extensive site investigations. OPP (Owner Procurement Process) system is a proven alternative contract delivery method that is potentially applicable to many tunnel projects. Using the OPP, the owner specifies and procures the TBMs and tunnel lining in advance of the tunnel contract procurement and provides TBM to a tunnel contractor with a goals of reducing project risks and accelerating project schedule. Depending on the blasting vibrations and noises, mechanized tunnelling will be more important particularly in city areas.

Estimation of geomechanical parameters of tunnel route using geostatistical methods

  • Aalianvari, Ali;Soltani-Mohammadi, Saeed;Rahemi, Zeynab
    • Geomechanics and Engineering
    • /
    • v.14 no.5
    • /
    • pp.453-458
    • /
    • 2018
  • Geomechanical parameters are important factors for engineering projects during design, construction and support stages of tunnel and dam projects. Geostatistical estimation methods are known as one of the most significant approach at estimation of Geomechanical parameters. In this study, Azad dam headrace tunnel is chosen to estimate Geomechanical parameters such as Rock Quality Designation (RQD) and uniaxial compressive strength (UCS) by ordinary kriging as a geostatistical method. Also Rock Mass Rating (RMR) distribution is presented along the tunnel. Main aim in employment of geostatistical methods is estimation of points that unsampled by sampled points.To estimation of parameters, initially data are transformed to Gaussian distribution, next structural data analysis is completed, and then ordinary kriging is applied. At end, specified distribution maps for each parameter are presented. Results from the geostatistical estimation method and actual data have been compared. Results show that, the estimated parameters with this method are very close to the actual parameters. Regarding to the reduction of costs and time consuming, this method can use to geomechanical estimation.

Groundwater control measures for deep urban tunnels (도심지 대심도 터널의 지하수 변동 영향 제어 방안)

  • Jeong, Jae-Ho;Kim, Kang-Hyun;Song, Myung-Kyu;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.403-421
    • /
    • 2021
  • Most of the urban tunnels in Korea, which are represented by the 1st to 3rd subways, use the drainage tunnel by NATM. Recently, when a construction project that actively utilizes large-scale urban space is promoted, negative effects that do not conform to the existing empirical rules of urban tunnels may occur. In particular, there is a high possibility that groundwater fluctuations and hydrodynamic behavior will occur owing to the practice of tunnel technology in Korea, which has mainly applied the drainage tunnel. In order to solve the problem of the drainage tunnel, attempts are being made to control groundwater fluctuations. For this, the establishment of tunnel groundwater management standard concept and the analysis of the tunnel hydraulic behavior were performed. To prevent the problem of groundwater fluctuations caused by the construction of large-scale tunnels in urban areas, it was suggested that the conceptual transformation of the empirical technical practice, which is applied only in the underground safety impact assessment stage, to the direction of controlling the inflow in the tunnel, is required. And the relationship between the groundwater level and the inflow of the tunnel required for setting the allowable inflow when planning the tunnel was derived. The introduction of a tunnel groundwater management concept is expected to help solve problems such as groundwater fluctuations, ground settlement, depletion of groundwater resources, and decline of maintenance performance in various urban deep tunnel construction projects to be promoted in the future.

Development of web-based system for ground excavation impact prediction and risk assessment (웹기반 굴착 영향도 예측 및 위험도 평가 시스템 개발)

  • Park, Jae Hoon;Lee, Ho;Kim, Chang Yong;Park, Chi Myeon;Kim, Ji Eun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.559-575
    • /
    • 2021
  • Due to the increase in ground excavation work, the possibility of ground subsidence accidents is increasing. And it is very difficult to prevent these risk fundamentally through institutional reinforcement such as the special law for underground safety management. As for the various cases of urban ground excavation practice, the ground subsidence behavior characteristics which is predicted using various information before excavation showed a considerable difference that could not be ignored compared to the results real construction data. Changes in site conditions such as seasonal differences in design and construction period, changes in construction methods depending on the site conditions and long-term construction suspension due to various reasons could be considered as the main causes. As the countermeasures, the safety management system through various construction information is introduced, but there is still no suitable system which can predict the effect of excavation and risk assessment. In this study, a web-based system was developed in order to predict the degree of impact on the ground subsidence and surrounding structures in advance before ground excavation and evaluate the risk in the design and construction of urban ground excavation projects. A system was built using time series analysis technique that can predict the current and future behavior characteristics such as ground water level and settlement based on past field construction records with field monitoring data. It was presented as a geotechnical data visualization (GDV) technology for risk reduction and disaster management based on web-based system, Using this newly developed web-based assessment system, it is possible to predict ground excavation impact prediction and risk assessment.

Mapping Submarine Bathymetry and Geological Structure Using the Lineament Analysis Method

  • Kwon, O-Il;Baek, Yong;Kim, Jinhwan
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.455-461
    • /
    • 2014
  • The Honam-Jeju, Korea-Japan, and Korea-China subsea tunnel construction projects have drawn significant attention since the early 2000s. These subsea tunnels are much deeper than most existing natural shallow sea tunnels linking coastal areas. Thus, the need for developing new technologies for the site selection and construction of deep subsea tunnels has recently emerged, with the launch of a research project titled "Development of Key Subsea Tunnelling Technology" in 2013. A component of this research, an analysis of deep subsea geological structure, is currently underway. A ground investigation, such as a borehole or geophysical investigation, is generally carried out for tunnel design. However, when investigating a potential site for a deep subsea tunnel, borehole drilling requires equipment at the scale of offshore oil drilling. The huge cost of such an undertaking has raised the urgent need for methods to indirectly assess the local geological structure as much as possible to limit the need for repeated borehole investigations. This study introduces an indirect approach for assessing the geological structure of the seafloor through a submarine bathymetry analysis. The ultimate goal here is to develop an automated approach to the analysis of submarine geological structures, which may prove useful in the selection of future deep subsea tunnel sites.

A study for recycling plan of excavated soil and filter cake of slurry shield TBM for road construction (도로공사 이수식 쉴드 TBM 굴착토 및 필터케이크 재활용방안 연구)

  • Nam, Sung-min;Park, Seo-young;Ahn, Byung-cheol
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.599-615
    • /
    • 2022
  • In order to excavate underground tunnel most safely such as Han river, the slurry shield TBM method is applied to cope with face of high water pressure for many metro projects. In downtown subway project most of excavated soil is discharged externally whereas in road construction excavated soil is used as filling materials so it becomes important factor for success of the project. After excavated soil, weathered rock and soft rock are discharged with bentonite through discharge pipe to slurry treatment plant then those soils are separated in separation plant according to those size. Fine grained soil has been discarded together with filter cake but it is not toxic and can be mixed with coarse aggregate in proper ratio so this study is performed to find use of qualified filling material to meet quality standard. Therefore, in this study, legal standards and quality standards for the utilization of excavated soil of the slurry shield TBM method were examined and test was conducted to derive recycling way for filter cake and aggregate. And a plan for using it as a filling material for road construction was derived. Because bentonite is a clay composed of montmorillonite, and the excavated soil in the tunnel is also non-toxic, disposal of this material can waste social cost so it is expected to be helpful in the underground space development project that carries out the TBM project by recycling it as a valuable resource.

Overall risk analysis of shield TBM tunnelling using Bayesian Networks (BN) and Analytic Hierarchy Process (AHP) (베이지안 네트워크와 AHP (Analytic Hierarchy Process)를 활용한 쉴드 TBM 터널 리스크 분석)

  • Park, Jeongjun;Chung, Heeyoung;Moon, Joon-Bai;Choi, Hangseok;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.453-467
    • /
    • 2016
  • Overall risks that can occur in a shield TBM tunnelling are studied in this paper. Both the potential risk events that may occur during tunnel construction and their causes are identified, and the causal relationship between causes and events is obtained in a systematic way. Risk impact analysis is performed for the potential risk events and ways to mitigate the risks are summarized. Literature surveys as well as interviews with experts were made for this purpose. The potential risk events are classified into eight categories: cuttability reduction, collapse of a tunnel face, ground surface settlement and upheaval, spurts of slurry on the ground, incapability of mucking and excavation, and water leakage. The causes of these risks are categorized into three areas: geological, design and construction management factors. Bayesian Networks (BN) were established to systematically assess a causal relationship between causes and events. The risk impact analysis was performed to evaluate a risk response level by adopting an Analytic Hierarchy Process (AHP) with the consideration of the downtime and cost of measures. Based on the result of the risk impact analysis, the risk events are divided into four risk response levels and these levels are verified by comparing with the actual occurrences of risk events. Measures to mitigate the potential risk events during the design and/or construction stages are also proposed. Result of this research will be of the help to the designers and contractors of TBM tunnelling projects in identifying the potential risks and for preparing a systematic risk management through the evaluation of the risk response level and the migration methods in the design and construction stage.