• Title/Summary/Keyword: tunneling injection

Search Result 59, Processing Time 0.023 seconds

Characterization of Organic Light-Emitting Diode (OLED) with Dual Emission using Al:Au Cathode (Al:Au 음극층을 이용한 양면발광(dual emission) 유기 EL 소자의 Al 두께별 특성 평가)

  • Lee, Su-Hwan;Kim, Dal-Ho;Yang, Hee-Doo;Kim, Ji-Heon;Lee, Gon-Sub;Park, Jea-Gun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.1
    • /
    • pp.47-51
    • /
    • 2008
  • The Al:Au double-layer metal electrode for use in transparent, dual emission of organic light-emitting diode (OLED) was fabricated. The electrode of Al:Au metals with various thicknesses was deposited by the vacuum thermal evaporation technique. For Al thickness of 1 nm, a bottom luminance of $4880\;cd/m^2$ was observed at 8 V. Otherwise, top luminance of $2020\;cd/m^2$ were observed at 8 V. In addition, the threshold voltages of the electrodes were 2.2 V. It was forward that the inserting 1 nm Al between LiF and Au enhanced electron injection with tunneling effect.

  • PDF

The oxidation of silicon nitride layer (실리콘 질화막의 산화)

  • 정양희;이영선;박영걸
    • Electrical & Electronic Materials
    • /
    • v.7 no.3
    • /
    • pp.231-235
    • /
    • 1994
  • The multi-dielectric layer $SiO_2$/$Si_3{N_4}$/$SiO_2$ (ONO) is used to improve charge retention and to scale down the memory device. The nitride layer of MNOS device is oxidize to form ONO system. During the oxidation of the nitride layer, the change of thickness of nitride layer and generation of interface state between nitride layer and top oxide layer occur. In this paper, effects of oxidation of the nitride layer is studied. The decreases of the nitride layer due to oxidation and trapping characteristics of interface state of multi layer dielectric film are investigated through the C-V measurement and F-N tunneling injection experiment using SONOS capacitor structure. Based on the experimental results, carrier trapping model for maximum flatband voltage shift of multi layer dielectric film is proposed and compared with experimental data. As a results of curve fitting, interface trap density between the top oxide and layer is determined as being $5{\times}10^11$~$2{\times}10^12$[$eV^1$$cm^2$].

  • PDF

Study on the 3 dimensional numerical analysis method for shield TBM tunnel considering key factors (주요 영향요소를 고려한 쉴드TBM 터널 3차원 수치해석기법 연구)

  • Jun, Gy-chan;Kim, Dong-hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.513-525
    • /
    • 2018
  • A 3 dimensional numerical analysis for shield TBM tunnel should take into account various characteristics of the shield TBM excavation, such as gap, tail void, segment installation, and backfill injection. However, analysis method considering excavation characteristics are generally mixed with various method, resulting in concern of consistency and reliability degradation of the analytical results. In this paper, a parametric study is carried out by using actually measured ground settlement data on various methods that can be used for 3 dimensional numerical analysis of shield TBM tunneling. As a result, we have analyzed and arranged an analytical method to predict similarly the behavior of ground settlement and tunnel face pressure at the design stage. Skin plate pressure, backfill pressure and soil model have been identified as the most significant influences on the ground settlement. The grout pressure model is considered to be applicable when there is no volume loss information on the excavated ground, such as seabed tunnels, or when it is important to identify the behavior around a tunnel, such as surface settlement as well as face pressure. And it is considered that designers can use these guidelines as a base material to perform a reasonable 3 dimensional numerical analysis that reflects the ground conditions and the features of the shield TBM tunneling.

Design of MTP memory IP using vertical PIP capacitor (Vertical PIP 커패시터를 이용한 MTP 메모리 IP 설계)

  • Kim, Young-Hee;Cha, Jae-Han;Jin, Hongzhou;Lee, Do-Gyu;Ha, Pan-Bong;Park, Mu-Hun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.1
    • /
    • pp.48-57
    • /
    • 2020
  • MCU used in applications such as wireless chargers and USB type-C require MTP memory with a small cell size and a small additional process mask. Conventional double poly EEPROM cells are small in size, but additional processing masks of about 3 to 5 sheets are required, and FN tunneling type single poly EEPROM cells have a large cell size. In this paper, a 110nm MTP cell using a vertical PIP capacitor is proposed. The erase operation of the proposed MTP cell uses FN tunneling between FG and EG, and the program operation uses CHEI injection method, which reduces the MTP cell size to 1.09㎛2 by sharing the PW of the MTP cell array. Meanwhile, MTP memory IP required for applications such as USB type-C needs to operate over a wide voltage range of 2.5V to 5.5V. However, the pumping current of the VPP charge pump is the lowest when the VCC voltage is the minimum 2.5V, while the ripple voltage is large when the VCC voltage is 5.5V. Therefore, in this paper, the VPP ripple voltage is reduced to within 0.19V through SPICE simulation because the pumping current is suppressed to 474.6㎂ even when VCC is increased by controlling the number of charge pumps turned on by using the VCC detector circuit.

Case study on soil conditioning for EPB tunneling and troubleshooting in various grounds (다양한 지반에서의 EPB TBM 첨가제 사용 및 문제 해결 사례 연구)

  • Han-byul Kang;Sung-wook Kang;Jae-hoon Jung;Jae-won Lee;Young Jin Shin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.65-85
    • /
    • 2023
  • The use of TBM (Tunnel boring machine) has increased worldwide due to its performance together with the benefit of being safely and environmentally friendly compared to conventional tunneling. In particular, EPB (Earth Pressure Balanced) TBM is widely used because it can be applied to various grounds compared to Open TBM. Also EPB TBM has a simple mechanical structure and advantages in cost, requires less ground area than Slurry TBM. EPB TBM has advantages in soft ground, and more importantly, can extend its applicability by use of appropriate soil conditioning, which improves mechanical and hydrological properties of excavated soil and increases the excavation performance of EPB TBM. Various studies suggested the proper mixing ratio and injection ratio, but almost they are limited to laboratory test under atmospheric pressure such as slump test. Actual field conditions may differ depending on the ground and mechanical condition. In this study, first the amount of used soil conditioning used in the field with various grounds from hard rock to soft ground was estimated through laboratory tests and compared with the estimate in design stage. And also it was compared with the amount used during actual excavation. In addition, experience of soil conditioning for the problems of cutter head clogging and groundwater inrush that occurred during excavation is discussed. Finally, lesson learned for the use of soil conditioning in difficult ground condition such as mixed ground are reviewed.

Effect on the Characteristics of Organic Light-Emitting Devices due to the PTFE buffer layer (유기발광소자 특성에 미치는 PTFE 버퍼층의 영향)

  • Jeong, J.;Oh, Y.C.;Chung, D.H.;Chung, D.K.;Kim, S.K.;Lee, S.W.;Hong, J.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1070-1073
    • /
    • 2003
  • We have studied the characteristics of organic light-emitting diodes(OLEDs) with the PTFE buffer layer. The OLEDs have been based on the molecular compounds, N,N'-diphenyl-N,N'-bis (3-methylphenyl)-1, 1'- biphenyl-4, 4'-diamine (TPD) as a hole transport, tris(8-hydroxyquinolinoline) aluminum (III) ($Alq_3$) as an electron transport and the Polytetrafluoroethylene (PTFE) as a buffer layer. The devices of structure were fabricated ITO/PTFE/TPD(40nm)/$Alq_3$(60nm)/Al( 150nm) to see the effects of the PTFE buffer layer in organic EL devices. The thickness of the PTFE layer varied from 0.5 to 10[nm]. We were measured Current-Voltage-Luminance Characteristics and Luminance efficiency due to the variation of PTFE thickness. the PTFE layer was reported that helped to enhance the hole tunneling injection and effectively impede induim diffusion from the ITO electrode. We have obtained an improvement of luminance efficiency when the PTFE thickness is 0.5[nm] is used. The improvement of efficiency of is expected due to a function of hole-blocking of PTFE in OLEDs.

  • PDF

Solution-Processed Inorganic Thin Film Transistors Fabricated from Butylamine-Capped Indium-Doped Zinc Oxide Nanocrystals

  • Pham, Hien Thu;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.494-500
    • /
    • 2014
  • Indium-doped zinc oxide nanocrystals (IZO NCs), capped with stearic acid (SA) of different sizes, were synthesized using a hot injection method in a noncoordinating solvent 1-octadecene (ODE). The ligand exchange process was employed to modify the surface of IZO NCs by replacing the longer-chain ligand of stearic acid with the shorter-chain ligand of butylamine (BA). It should be noted that the ligand-exchange percentage was observed to be 75%. The change of particle size, morphology, and crystal structures were obtained using a field emission scanning electron microscope (FE-SEM) and X-ray diffraction pattern results. In our study, the 5 nm and 10 nm IZO NCs capped with stearic acid (SA-IZO) were ligand-exchanged with butylamine (BA), and were then spin-coated on a thermal oxide ($SiO_2$) gate insulator to fabricate a thin film transistor (TFT) device. The films were then annealed at various temperatures: $350^{\circ}C$, $400^{\circ}C$, $500^{\circ}C$, and $600^{\circ}C$. All samples showed semiconducting behavior and exhibited n-channel TFT. Curing temperature dependent on mobility was observed. Interestingly, mobility decreases with the increasing size of NCs from 5 to 10 nm. Miller-Abrahams hopping formalism was employed to explain the hopping mechanism insight our IZO NC films. By focusing on the effect of size, different curing temperatures, electron coupling, tunneling rate, and inter-NC separation, we found that the decrease in electron mobility for larger NCs was due to smaller electronic coupling.

Analyzing the Change of Surface Water and Groundwater Systems Caused by Tunnel Construction in Northern Ulsan City (울산시 북구 지역 터널 굴착에 의한 지표수계 및 지하수계 변화 분석)

  • Jeon, Hang-Tak;Hamm, Se-Yeong;Lee, Chung-Mo;Lim, Woo-Ri;Yun, Sul-Min;Park, Heung-Jai
    • The Journal of Engineering Geology
    • /
    • v.28 no.1
    • /
    • pp.81-99
    • /
    • 2018
  • Excessive groundwater discharge by tunneling and tunnel operation can lead to groundwater exhaustion and ground subsidence. Therefore, it is very important to evaluate environmental impact and to establish mitigation measures of the impact related to tunnel excavation based on hydrogeological and modeling approaches. This study examined the depletion of surface reservoirs and valley water due to tunnel excavation through field survey, water quality analysis, tracer test, and groundwater modeling. As a result of field water quality test, the concentration of chemical constituents in groundwater discharge into the tunnel is slightly higher than that of valley water. By the result of laboratory water analysis, both valley water and the groundwater belong to $Ca^{2+}+HCO_3{^-}$ type. Tracer test that was conducted between the valley at the injection point and the tunnel, indicates valley water infiltration into the ground and flowing out to the tunnel, with maximum electrical conductance changes of $70{\mu}S/cm$ in the first test and of $40{\mu}S/cm$ in the second test. By groundwater modeling, the groundwater discharge rate into the tunnel during tunnel construction is estimated as $4,942m^3/day$ and groundwater level recovers in 3 years from the tunnel completion. As a result of particle tracking modeling, the nearest particle reaches the tunnel after 6 hours and the farthest particle reaches the tunnel after 9 hours, similarly to the case of the field trace test.

Review of Pre-grouting Methods for Shield TBM Tunneling in Difficult Grounds (특수지반에서 쉴드TBM 굴착 시 프리그라우팅 적용 사례 고찰)

  • Yoon, Youngmin;Jeong, Hoyoung;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.528-546
    • /
    • 2018
  • Cases of TBM tunnelling have been consistently increasing worldwide. In many recent subsea and urban tunnelling projects, TBM excavation has been preferably considered due to its advantages over drill and blast tunnelling. Difficult ground conditions are highly probable to appear in subsea and urban tunnels because of the shallow working depth and alluvial characteristics. Under the difficult ground conditions, ground reinforcement measures should be considered including grouting, while it is of great importance to select the optimal grout material and injection method to cope with the ground condition. The benefits from TBM excavation, such as fast excavation, increased safety, and reduced environmental impact, can be achieved by applying appropriate ground reinforcement with the minimum overrun of cost and time. In this report, various grouting methods were reviewed so that they can be applied in difficult ground conditions. In addition, domestic and international cases of successful ground reinforcement for difficult grounds were introduced for future reference.