• Title/Summary/Keyword: tunnel support system

Search Result 186, Processing Time 0.03 seconds

A Thermo-Hydro-Mechanical Coupled Numerical Simulation on the FE Experiment: Step 1 Simulation in Task C of DECOVALEX-2023 (Mont Terri FE 실험 대상 열-수리-역학 복합거동 수치해석: DECOVALEX-2023 Task C 내 Step 1 수치해석 연구)

  • Taehyun, Kim;Chan-Hee, Park;Changsoo, Lee;Jin-Seop, Kim
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.518-529
    • /
    • 2022
  • In Task C of the DECOVALEX-2023 project, nine institutes from six nations are developing their numerical codes to simulate thermo-hydro-mechanical coupled behavior for the FE experiment performed at Mont Terri underground rock laboratory, Switzerland. Currently, Step 1 for comparing the simulation results to field data is the ongoing stage, and we used the OGS-FLAC simulator for a series of numerical simulations. As a result, temperature increase depending on the heating hysteresis was well simulated, and saturation variation in the bentonite depending on phase change was observed. However, due to the suction overestimation, relative humidity and temperature change in the bentonite and the pressure variation in the Opalinus clay showed a difference compared to the field data. From the observation, it is confirmed that the effect of the bentonite capillary pressure is dominant to the flow analysis in the disposal system. We further plan to draw improved results considering tunnel support material and accurate initial water pressure distribution. Additionally, the thermal, hydrological, and mechanical anisotropy of the Opalinus clay was well simulated. From the simulation results, we confirmed the applicability of the OGS-FLAC simulator in the disposal system analysis.

Incompatible deformation and damage evolution of mixed strata specimens containing a circular hole

  • Yang, Shuo;Li, Yuanhai;Chen, Miao;Liu, Jinshan
    • Geomechanics and Engineering
    • /
    • v.20 no.5
    • /
    • pp.461-474
    • /
    • 2020
  • Analysing the incompatible deformation and damage evolution around the tunnels in mixed strata is significant for evaluating the tunnel stability, as well as the interaction between the support system and the surrounding rock mass. To investigate this issue, confined compression tests were conducted on upper-soft and lower-hard strata specimens containing a circular hole using a rock testing system, the physical mechanical properties were then investigated. Then, the incompatible deformation and failure modes of the specimens were analysed based on the digital speckle correlation method (DSCM) and Acoustic Emission (AE) data. Finally, numerical simulations were conducted to explore the damage evolution of the mixed strata. The results indicate that at low inclination angles, the deformation and v-shaped notches inside the hole are controlled by the structure plane. Progressive spalling failure occurs at the sidewalls along the structure plane in soft rock. But the transmission of the loading force between the soft rock and hard rock are different in local. At high inclination angles, v-shaped notches are approximately perpendicular to the structure plane, and the soft and hard rock bear common loads. Incompatible deformation between the soft rock and hard rock controls the failure process. At inclination angles of 0°, 30° and 90°, incompatible deformations are closely related to rock damage. At 60°, incompatible deformations and rock damage are discordant due that the soft rock and hard rock alternately bears the major loads during the failure process. The failure trend and modes of the numerical results agree very well with those observed in the experimental results. As the inclination angles increase, the proportion of the shear or tensile damage exhibits a nonlinear increase or decrease, suggesting that the inclination angle of mixed strata may promote shear damage and restrain tensile damage.

A study on service model for unified data transmission in a subway and railway (차지상간 통합전송시스템의 서비스 모델에 관한 연구)

  • An, Tae-Kil;Kim, Back-Hyun;Jeong, Sang-Guk;Nam, Myung-Woo;Lee, Young-Seock;Oh, Myung-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1573-1579
    • /
    • 2010
  • In this paper, we studied efficient design of wireless transmission system for unified data transmission in a subway and railway. It is increased that need of broadband multimedia service to make useful environment for users and to support the operation of railway system. High bandwidth is better if we need more services. But, high bandwidth requires more cost at tunnel of subway. And more bandwidth makes received antenna sensitivity bad. So it needs more wireless stations. We deduced best bandwidth for subway wireless transmission system using the cost of installation and efficiency of system. Consequently, we proposed efficient service model for broadband wireless system at a subway. Subway broadband wireless transmission system is testing and extended to province subway. The cost of subway broadband wireless transmission system is saved, because the system can be efficiently designed using proposed service model. Therefore, the effectiveness of it will be expected to be very big.

An Implementation of Explicit Multicast with Mobile IP for Small Group Communications in Mobile Networks (이동통신환경에서의 소규모 그룹통신을 위한 XMIP 프로토콜의 구현)

  • PARK IN-SOO;PARK YONG-JIN
    • The KIPS Transactions:PartC
    • /
    • v.12C no.2 s.98
    • /
    • pp.267-280
    • /
    • 2005
  • In this paper, we implement and verify XMIP integrating IETF Mobile IP and the Explicit Multicast mechanism for a great number of small group multicast communications. U a source node sends Xcast packets explicitly inserting destination nodes into the headers, each Xcast router decides routes and forwards the packets toward each destination node based on unicast routing table without the support of multicast trees. n is a straightforward and simple multicast mechanism just based on a unicast routing table without maintaining multicast states because of the inheritance from the Explicit Multicast mechanism. This research modifies and extends the functionality of IETF Mobile IP's mobility agents, such as HA/FA to HA+/FA+ respectively, considering interworking with Xcast networks. Xcast packets captured by HA+ are forwarded into X-in-X tunnel interfaces for each FA+ referred to the binding table of HA.. This X-in-X tunneling mechanism can effectively solve the traffic concentration problem of IETF Mobile IP multicast services. Finally WLAN-based testbed is built and a multi-user Instant messenger system is developed as a Xcast application for finally verify the feasibility of the implemented XMIP/Xcast protocols.

A Study on Optimal Technical Factors of USFSS Based on Integrated Technique of Wireless Communication and Location Awareness (무선통신 및 위치인식 통합기술을 활용한 지하구조물 현장지원시스템 최적 요소기술 연구)

  • Jang, Yong-Gu;Jeong, Jae-Hyung;Lee, Jun-Woo;Kim, Hyun-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.4
    • /
    • pp.48-58
    • /
    • 2009
  • In recent years, construction worker safety in construction site is important. Especially, the frequent collapse accidents have happened in tunnels, utility tunnel and underground structure, so that the importance of worker safety is greatly emphasized. It is difficult to communicate with other workers in underground space, using the current cable or wireless communicator. When the accident is occurred, it can't rescue workers. This is the reason that it has a deficiency to find a location of survivor and communicate rescure crew and field workers. In this paper we extract the optimal technical factors of USFSS(Underground Structure Field Support System) based on integrated technique of wireless communication and location awareness. And USFSS developed in this study is suited for bad environment of underground structure construction and able to track 3D position of laborer and communicate mutually.

  • PDF

A Study on the Correlation Between Electrical Resistivity and Rock Classification (전기비저항과 암반분류의 상관관계에 대한 고찰)

  • Kwon, Hyoung-Seok;Hwang, Se-Ho;Baek, Hwan-Jo;Kim, Ki-Seog
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.4
    • /
    • pp.350-360
    • /
    • 2008
  • Electrical resistivity is one of physical property of the earth and measured by electrical resistivity survey, electrical resistivity logging and laboratory test. Recently, electrical resistivity is widely used in determination of rock quality in support pattern design of road and railway tunnel construction sites. To get more reliable rock quality data from electrical resistivity, it needs a lot of test and study on correlation of resistivity and rock quality. Firstly, we did rock property test in laboratory, such as P wave velocity, Young's modulus, uniaxial compressive strength (UCS) and electrical resistivity. We correlate each test results and we found out that electrical resistivity has highly related to P wave velocity, Young's modulus and UCS. Next, we accomplished electrical resistivity survey in field site and carried out electrical resistivity logging at in-situ area. We also performed rock classification, such as RQD, RMR and Q-system and we correlate electrical resistivity to RMR data. We found out that electrical resistivity logging data are highly correlate to RMR. Also we found out that electrical resistivity survey data are lower than electrical resistivity logging data when there are faults or fractures. And it cause electrical resistivity survey data to lowly correlate to RMR.