• Title/Summary/Keyword: tunnel stability analysis

Search Result 645, Processing Time 0.038 seconds

Effect of the support pressure modes on face stability during shield tunneling

  • Dalong Jin;Yinzun Yang;Rui Zhang;Dajun Yuan;Kang Zhang
    • Geomechanics and Engineering
    • /
    • v.36 no.5
    • /
    • pp.417-426
    • /
    • 2024
  • Shield tunneling method is widely used to build tunnels in complex geological environment. Stability control of tunnel face is the key to the safety of projects. To improve the excavation efficiency or perform equipment maintenance, the excavation chamber sometimes is not fully filled with support medium, which can reduce the load and increase tunneling speed while easily lead to ground collapse. Due to the high risk of the face failure under non-fully support mode, the tunnel face stability should be carefully evaluated. Whether compressive air is required for compensation and how much air pressure should be provided need to be determined accurately. Based on the upper bound theorem of limit analysis, a non-fully support rotational failure model is developed in this study. The failure mechanism of the model is verified by numerical simulation. It shows that increasing the density of supporting medium could significantly improve the stability of tunnel face while the increase of tunnel diameter would be unfavorable for the face stability. The critical support ratio is used to evaluate the face failure under the nonfully support mode, which could be an important index to determine whether the specific unsupported height could be allowed during shield tunneling. To avoid of face failure under the non-fully support mode, several charts are provided for the assessment of compressed air pressure, which could help engineers to determine the required air pressure for face stability.

Removability and Stability Analysis Method of Rock Blocks Considering Discontinuity Persistence in Tunnel Constructions (터널시공에서의 불연속면의 연속성을 고려한 암반블럭의 거동성 및 안정성 해석기법)

  • Hwang, Jae-Yun;Ohnishi, Yuzo;Nishiyama, Satoshi
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.39-48
    • /
    • 2003
  • Previous analytical models for key blocks have been based on the assumption of infinite persistent discontinuities. In this paper, a key block analysis method considering the finite persistence of discontinuities is proposed as a stability evaluation method in tunnel constructions, and then applied to an actual example site. Three-dimensional rock block identification with consideration of the persistence of discontinuities is performed by using discontinuity disk model. The removability and stability analyses of rock blocks formed by the identification method are performed. The identification method can handle convex and concave shape blocks. In order to demonstrate the applicability of this developed numerical method to the stability evaluation in tunnel constructions, the analytical results are examined and compared one another.

Analysis on the effect of strength improvement and water barrier by tunnel grouting reinforcement (터널 그라우팅 보강에 의한 차수 및 강도 증가효과의 분석)

  • You, Kwang-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.4
    • /
    • pp.291-304
    • /
    • 2011
  • Recently concern for subsea tunnels is increasing, The effect of high water pressure can not be ignored in the case of a deep subsea tunnel. Reinforcement like grouting is necessary for the stability of such a subsea tunnel. In this study, therefore, it was investigated how the water barrier and shear strength increment resulted from grouting had an effect on the stability of a subsea tunnel. To this end, two-dimensional hydromechanical coupled analyses were performed for a sensitivity analysis in terms of different range, permeability coefficient, and cohesion of grouting reinforcement for the rock classes I, III, and V with respect to RMR system. The mutual relationship between strength increment and water pressure increased by barrier effect due to grouting was investigated by analyzing the numerical results.

Dynamic interaction analysis of submerged floating tunnel and vehicle (튜브형 수중교량의 교량-차량 동적상호작용 해석방법)

  • Kim, Moon-Young;Kwark, Jong-Won;Min, Dong-Ju
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.83-88
    • /
    • 2013
  • The purpose of this study is to develop the algorithm for dynamic interaction analysis of submerged floating tunnel and vehicles. The dynamic behavior characteristic of submerged floating tunnel is certainly different with general structures, because the submerged floating tunnel is floating in the middle of water, and subjected to constant buoyance. Therefore the analyses in various aspects should be carried out to secure structural stability and practicality of structures. To conduct the dynamic interaction analysis, the structure is modeled by commercial FEM program ABAQUS to investigate modal characteristic. Also the added mass concept is applied to represent the inertial force by a fluid, and then dynamic interaction analyses are conducted with superposition method when the KTX is moving along the submerged floating tunnel. And the time histories are presented for vertical and lateral displacement at the center of the tunnel.

  • PDF

Structure stability study for existing subway tunnel segment of Seoul-Busan high-speed railroad (Daegu - Busan) construction (경부고속철도(대구-부산) 도심통과 노반신설 공사중 기존 지하철 터널구간의 구조적 안정성 검토)

  • Kong, Byung-Seung;Kim, Min-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1752-1759
    • /
    • 2007
  • In the new Seoul-Busan high speed railroad construction specially city center passage roadbed establishment is recommended the staibility for the existing subway tunnel segments of Busan subway line No. 1 and No.2. regarding the appearance condition, a quality condition and the durability of the objective facility site exact inspection, and it evaluates the numerical analysis which uses MIDAS GTS it leads and there is the objective of the place where the stability of the objective facility and this tunnel it investigates. To immediacy of the on-the-spot inspection result whole facility it is a condition where the reinforcement which is simple not to be hindrance is necessary, 2nd Line case it is a condition which transfer is good but the general defect and the damage which occur from the tunnel of NATM type were confirmed part. While roadbed establishment constructing that the continuous maintenance is necessary, it is judged. The result of 1st, 2nd Line maximum sinkage, unequal sinkage and the lining stress of numerical analysis are within permission and the damage degree is appearing with the fact that the degree it will can disregard it is slight. But it enforces necessary Pre-grouting in order to minimize an actual tunnel face conduct and when the tunnel is excavated it is judged with the fact that necessary to minimize the outflow possibility.

  • PDF

DEA optimization for operating tunnel back analysis (운영 중 터널 역해석을 위한 차분진화 알고리즘 최적화)

  • An, Joon-Sang;Kim, Byung-Chan;Moon, Hyun-Koo;Song, Ki-Il;Su, Guo-Shao
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.183-193
    • /
    • 2016
  • Estimation of the stability of an operating tunnel through a back analysis is a difficult concept to analyze. Specially, when a relatively thick lining is constructed as in case of a subsea tunnel, there will be a limit to the use of displacement-based tunnel back analysis because the corresponding displacement is too small. In this study, DEA is adopted for tunnel back analysis and the feasibility of DEA for back analysis is evaluated. It is implemented in the finite difference code FLAC3D using its built-in FISH language. In addition, the stability of a tunnel lining will be evaluated from the development of displacement-based algorithm and its expanded algorithm with conformity of several parameters such as stress measurements.

A Study on Bending Behavior of Tunnel Support (터널지보의 굽힘거동에 관한 연구)

  • Lee, Dong-Woo;Cho, Seok-Swoo;Joo, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.8
    • /
    • pp.896-902
    • /
    • 2007
  • The tunnel stability concerned with safety is very important in coal production process. The tunnel supports made by the GI beam has been used in domestic coal mine tunnels, and the GI beam was connected with another by the fish plate. It is necessary to analysis for the bending problems of the fish plate due to the rock pressure in some domestic mine tunnels. Therefore, this study proposes the application possibility of the optimization algorithms for the problem searching a load condition that bring about bending problem in tunnels. Consequently, in order to investigate the load conditions, desirability function as one of the optimization methods to study the bending behavior of tunnel supports was applied.

Deterioration Character of tunnel damaged by fire and Fire Proofing Measure (화재에 의한 터널 열화특성 및 내화대책 기술)

  • Seo, Kang-Chun;Yoon, Tae-Gook;Park, Si-Hyun;Cho, Sung-Han;Kim, Eun-Chong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.129-139
    • /
    • 2005
  • In this paper, the behaviors of tunnel damaged by fire, the diagnostic techniques for evaluating tunnel stability are presented. Also two fireproof construction methods are recommended. Three tunnels damaged by fire were analyzed to evaluate the structural stability. From the these analyzed, it is recommended that surface checking, rebound number of concrete by Schmidt Hammer, and carbonation of concrete are essential to evaluate the engineering properties of concrete in tunnel structure damaged by fire. On the basis of case studies of tunnel fire collected by ITA, the change of concrete and steel strengths by fire are explained, and numerical analysis, which was performed on culvert and circle tunnel, shows that distribution of temperature in the tunnel is dependant upon tunnel shape. Two fireproof construction methods using panel and punching metal are introduced to protect the tunnel by fire.

  • PDF

Practical 2-Arch Road Tunnel Design in Mountainous area (산악지형에서 효율적인 2-Arch 터널의 설계사례)

  • Jeong, Kyeong-Han;Lee, Joo-Gong;Han, Sung-Su;Hwang, Yong-Sub;Kim, Ji-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.601-612
    • /
    • 2005
  • In mountainous area, Two parallel tunnels have been usually recognized as a road tunnel which has benefits in aspects of cost and stability. However, Design and construction of 2-Arch road tunnel are growing recently due to environmental destruction, compensation of land and difficulty of route separation. As studies are mainly undergoing on only guaranteeing stability and developing a waterproofing-drainage system to avoid water leakage through comprehension for characteristics of 2-arch tunnel behaviors, there is a tendency to evaluate quantity of support by empirical method with a tunnel which has a complicated cross-section and lack of construction ability. In this study, therefore, we made a plan of tunnel cross-section which had shown good construction ability and developed the waterproofing-drainage system which is able to solve the water leakage problem fundamentally by analyzing precedented 2-arch tunnels and investigating their sites in and out of nation. We also determined fixed quantity of support by a large-scale model test and numerical analysis. We want to contribute to 2-arch tunnel design hereafter introducing design procedure and method applied here.

  • PDF

Estimation of subsea tunnel stability considering ground and lining stiffness degradation measurements (지반 및 라이닝 열화 계측 정보를 반영한 해저 터널의 안정성 평가)

  • An, Joon-Sang;Kim, Byung-Chan;Moon, Hyun-Koo;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.389-399
    • /
    • 2016
  • Efficiency for estimation of subsea tunnel safety can be increased through reflecting back analysis algorithm to displacement measurements besides other measurement information such as stress, water pressure and ground stiffness degradation. In this study, the finite difference code FLAC3D built-in FISH language is used. In addition, the stability of the tunnel lining will be evaluated from the development of displacement-based algorithm and its expanded algorithm with conformity of several parameters such as stress measurements, water pressure measurements, tunnel lining degradation measurements and ground stiffness degradation measurements. By using additional measurement information to assess the stability of subsea tunnel, it was confirmed that the error rate is reduced to the tunnel back analysis.