• Title/Summary/Keyword: tunnel scale model test

검색결과 209건 처리시간 0.082초

대형캐비테이션터널(LCT) 실물 구동펌프 성능시운전 (Performance Trial-Test of the Full-Scale Driving Pump for the Large Cavitation Tunnel(LCT))

  • 안종우;김건도;김기섭;박영하
    • 대한조선학회논문집
    • /
    • 제52권6호
    • /
    • pp.428-434
    • /
    • 2015
  • The objective of the present study is to analyze the results of the trial-test for the full-scale driving pump, which is arranged in the LCT (Large Cavitation Tunnel). Firstly, the reasons of selecting the final design pump are introduced in terms of the performance analysis in model tests. The trial-test items for the full-scale driving pump are measurements of output current/voltage at the inverter of the main motor and the flow velocity in the LCT test section. The test results show the increase in flow rate of about 10.7% and the decrease in pump head of about 26%, compared with those of final design-pump specification. The motor power has the margin of about 22%. The performance analysis for the full-scale pump is conducted using the commercial code (CFX-10). The delivered power calculated with CFX-10 shows good agreement with that extracted from the full-scale pump test. It is found that CFX-10 is useful to analyze a full-scale pump.

축소모형실험에 의한 불연속면 암반에서의 병설터널 적용성 평가 (Evaluation on Tunnel in Uncontinuous Rock Mass by Small-Scale Model Tests)

  • 김홍택;유찬호;황정순;윤현돈
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.181-188
    • /
    • 2008
  • In this study, estimation of behavioral characteristics between twin tunnels was performed through the series of laboratory experiment on the small scale tunnel model. In the model test, the experimental parameters were geological conditions, center to center distance between twin tunnels, application of discontinuous inclination. To estimated behavior of pillar and load-displacement relationship by model tests and numerical analyses.

  • PDF

굴진장을 고려한 얕은 터널파괴거동에 대한 모형실험 및 수치해석 (Model Test and Numerical Analysis for Failure Behaviour of Shallow Tunnel Considering Unsupported Tunnel Length)

  • 김영민
    • 터널과지하공간
    • /
    • 제15권6호
    • /
    • pp.400-410
    • /
    • 2005
  • 토사지반에서 얕은 터널을 굴착하는 경우, 터널 막장부의 파괴 메카니즘이 터널 안정성에 큰 영향을 미친다. 본 논문에서는 일련의 굴진장을 고려한 2차원 종 방향 터널 모형 실험을수행하였다. 그 결과 얕은 터널의 파괴 메카니즘은 굴진장이 길어질수록 파괴모드 1에서 파괴모드 2로 변하는 것을 알 수 있었다. 또한, 모형실험결과와 수치해석을 비교하여 터널에 작용하는 최소 지보압과 진행성 파괴 거동에 대하여 분석하였다.

산악지형에서 효율적인 2-Arch 터널의 설계사례 (Practical 2-Arch Road Tunnel Design in Mountainous area)

  • 정경한;이주공;한성수;황용섭;김지성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 지반공학 공동 학술발표회
    • /
    • pp.601-612
    • /
    • 2005
  • In mountainous area, Two parallel tunnels have been usually recognized as a road tunnel which has benefits in aspects of cost and stability. However, Design and construction of 2-Arch road tunnel are growing recently due to environmental destruction, compensation of land and difficulty of route separation. As studies are mainly undergoing on only guaranteeing stability and developing a waterproofing-drainage system to avoid water leakage through comprehension for characteristics of 2-arch tunnel behaviors, there is a tendency to evaluate quantity of support by empirical method with a tunnel which has a complicated cross-section and lack of construction ability. In this study, therefore, we made a plan of tunnel cross-section which had shown good construction ability and developed the waterproofing-drainage system which is able to solve the water leakage problem fundamentally by analyzing precedented 2-arch tunnels and investigating their sites in and out of nation. We also determined fixed quantity of support by a large-scale model test and numerical analysis. We want to contribute to 2-arch tunnel design hereafter introducing design procedure and method applied here.

  • PDF

수지해석에 의한 터널의 파괴거동에 미지는 영향분석 (A Study on Effects of Failure Behaviour of Tunnel Using A Numerical Analysis)

  • 김영민
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.309-314
    • /
    • 1999
  • In this paper, an application of finite element procedure fur tunnel failure analysis has been studied. The numerical model is applied to the simulation of a series of plane strain laboratory tests on the small scale model of a shallow tunnel. By comparing experimental and numerical results some conclusions are drawn on the effectiveness of the numerical approach. The findings from these numerical experiments show relative differences in the pattern of failure behaviour for shallow tunnels.

  • PDF

한국형 터널 미기압파 저감 시험기 개발 (Development of A New Facility for Moving Model Test)

  • 김동현;양신추;오일근
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 추계학술대회 논문집
    • /
    • pp.146-154
    • /
    • 1999
  • The test facility of the 1/60-scale models for the train-tunnel interactions was recently developed to investigate the effects of entry portal shapes, flood shapes and air-shafts for reducing the micro-pressure waves radiating to the surroundings of the tunnel exits by KRRI in Korea. The launching system of train model was chosen as air-gun type. In present test rig, after train model is launched, the blast wave by the driver did not enter to inside of the tunnel model. The train model is guided on the one-wire system from air-gun driver to the brake parts of test facility end. Some cases of the experiments were compared with numerical simulations to prove the test facility.

  • PDF

A modified shell-joint model for segmental tunnel dislocations under differential settlement

  • Jianguo Liu;Xiaohui Zhang;Yuyin Jin;Wenyuan Wang
    • Geomechanics and Engineering
    • /
    • 제35권4호
    • /
    • pp.411-424
    • /
    • 2023
  • Reasonable estimates of tunnel lining dislocations in the operation stage, especially under longitudinal differential settlement, are important for the design of waterproof gaskets. In this paper, a modified shell-joint model is proposed to calculate shield tunnel dislocations under longitudinal differential settlement, with the ability to consider the nonlinear shear stiffness of the joint. In the case of shell elements in the model, an elastoplastic damage constitutive model was adopted to describe the nonlinear stress-strain relationship of concrete. After verifying its applicability and correctness against a full-scale tunnel test and a joint shear test, the proposed model was used to analyze the dislocation behaviors of a shield tunnel in Shanghai Metro Line 2 under longitudinal differential settlement. Based on the results, when the tunnel structure is solely subjected to water-earth load, circumferential and longitudinal joint dislocations are all less than 0.1 mm. When the tunnel suffers longitudinal differential settlement and the curvature radius of the differential settlement is less than 300 m, although maximum longitudinal joint dislocation is still less than 0.1 mm, the maximum circumferential joint dislocation is approximately 10.3 mm, which leads to leakage and damage of the tunnel structure. However, with concavo-convex tenons applied to circumferential joints, the maximum dislocation value reduces to 4.5 mm.

MR Tanker 실선 프로펠러 캐비테이션 시험 및 LCT 모형시험과 비교연구 (Comparative Study of Full-Scale Propeller Cavitation Test and LCT Model Test for MR Tanker)

  • 안종우;백부근;설한신;박영하;김건도;김기섭;정보준;최성준
    • 대한조선학회논문집
    • /
    • 제53권3호
    • /
    • pp.171-179
    • /
    • 2016
  • In order to study correlation of the propeller cavitation performance between a full-scale ship and a model ship for the MR Tanker, the full-scale ship and the model tests were conducted. The full-scale ship test is composed of cavitation observation, pressure fluctuation and noise measurements, which are conducted using 2 observation windows and 8 pressure transducers installed inside the full-scale ship above the propeller. The model test in the Large Cavitation Tunnel(LCT) was conducted at the same conditions as that of the full-scale ship and its results are compared with those of the full-scale ship. Through the model-ship correlation analysis, it is considered that the experimental technique for the MR Tanker class ship was verified in LCT.

기존터널에 근접하여 경사로 교차되는 하부터널굴착에 따른 교차부지반의 거동 (Behavior of the Ground in Obliquely Crossed area Due to Tunnel Excavation Under the Existing Tunnel)

  • 김동갑;이상덕
    • 한국터널지하공간학회 논문집
    • /
    • 제7권4호
    • /
    • pp.285-294
    • /
    • 2005
  • 본 연구에서는 저토피 구간에서 기존터널 하부에 새로운 터널이 경사로 교차하여 신설할 때 하부 터널굴착으로 인하여 발생하는 교차부 주변지반과 상부터널의 거동을 분석하였다. 4.0m (폭), 3.8m (높이), 4.1m (길이) 크기의 콘크리트로 제작된 대형토조에서 모래를 이용하여 상대밀도기 일정한 모형지반을 3.4m높이로 조성하였고, 상하터널의 교차 각도가 $56^{\circ}$인 경우에 대하여 대형모형실험을 실시하였다. 또한, 모형실험과 동일한 조건으로 수치해석을 실시하여 실험결과와 연관하여 분석하였다. 연구결과 교차부 주변지반은 하부터널 종방향의 응력 전이로 인하여 교차 전과 교차 후에 응력과 지반변위의 차이가 발생하였다. 모형실험 결과로부터 교차 전 후의 하부터널굴착에 따른 종방향 응력전이가 상부터널에 의하여 차단됨을 알 수 있었다.

  • PDF

Evaluation on bridge dynamic properties and VIV performance based on wind tunnel test and field measurement

  • Yang, Yongxin;Ma, Tingting;Ge, Yaojun
    • Wind and Structures
    • /
    • 제20권6호
    • /
    • pp.719-737
    • /
    • 2015
  • Full scale measurement on the structural dynamic characteristics and Vortex-induced Vibrations (VIV) of a long-span suspension bridge with a central span of 1650 m were conducted. Different Finite Element (FE) modeling principles for the separated twin-box girder were compared and evaluated with the field vibration test results, and the double-spine model was determined to be the best simulation model, but certain modification still needs to be made which will affect the basic modeling parameters and the dynamic response prediction values of corresponding wind tunnel tests. Based on the FE modal analysis results, small-scaled and large-scaled sectional model tests were both carried out to investigate the VIV responses, and probable Reynolds Number effects or scale effect on VIV responses were presented. Based on the observed VIV modes in the field measurement, the VIV results obtained from sectional model tests were converted into those of the three-dimensional (3D) full-scale bridge and subsequently compared with field measurement results. It is indicated that the large-scaled sectional model test can probably provide a reasonable and effective prediction on VIV response.