• 제목/요약/키워드: tunnel roof

검색결과 185건 처리시간 0.022초

축소모형을 이용한 방음터널의 자연채광 성능평가에 관한 연구 (A Study on the Evaluation of the Daylighting Performance in the Sound Barrier Tunnel)

  • 김임곤;최정민;박창섭;이경희
    • 한국태양에너지학회 논문집
    • /
    • 제25권2호
    • /
    • pp.35-43
    • /
    • 2005
  • This study aims to evaluate the natural lighting performance in the sound barrier tunnel. Therefore, to evaluate the daylighting performance, the combinations of 3 tunnel roof types which are flat-roof-type(type A), slope-roof-type(type B), arch-roof-type(type C) and 3 window types which are side-window-type(type 1), one-window-roof type(type 2), two-window-roof type(type 3) are evaluated by experimenting small scaled models. In this 9 cases of experiment, illuminance levels of each case are analyzed and evaluated. The conclusion of this study is that slope-roof-type(B) and arch-roof-type(C) is preferable to flat-roof-type(A) and one-window-roof-type(B) and two-window-roof-type(C) is preferable to side-window-type(A) for daylighting in the sound barrier tunnel.

Roof collapse of shallow tunnel in layered Hoek-Brown rock media

  • Yang, X.L.;Li, K.F.
    • Geomechanics and Engineering
    • /
    • 제11권6호
    • /
    • pp.867-877
    • /
    • 2016
  • Collapse shape of tunnel roof in layered Hoek-Brown rock media is investigated within the framework of upper bound theorem. The traditional collapse mechanism for homogeneous stratum is no longer suitable for the present analysis of roof stability, and it would be necessary to propose a curve failure mode to describe the velocity discontinuity surface in layered media. What is discussed in the paper is that the failure mechanism of tunnel roofs, consisting of two different functions, is proposed for layered rock media. Then it is employed to investigate the impending roof failure. Based on the nonlinear Hoek-Brown failure criterion, the collapse volume of roof blocks are derived with the upper bound theorem and variational principle. Numerical calculations and parametric analysis are carried out to illustrate the effects of different parameters on the shape of failure mechanism, which is of overriding significance to the stability analysis of tunnel roof in layered rock media.

방음터널의 자연환기성능 향상에 대한 연구 (The Study on the Improvement of Ventilation Performance in the Soundproof Tunnel)

  • 이경희;조성우;최정민;김경환;박창섭
    • 설비공학논문집
    • /
    • 제17권10호
    • /
    • pp.922-929
    • /
    • 2005
  • This paper compared ventilation performance between the sound roof tunnel with flat roof and the sound roof tunnel with gable roof. The ventilation rate of the sound roof tunnel is calculated by natural ventilation rate plus ventilation by vehicle. The roof type is divided by the shape of the roof and the ventilator location on the roof. The results between calculation and CFD on the ventilation rate are almost alike. The ventilation rate on the flat roof is $558.4\;m^3/s$ with mid-ventilator and $496.8\;m^3/s$ with left-right ventilator. The ventilation rate on the gable roof is $653.2\;m^3/s$ with mid-ventilator and $611.6\;m^3/s$ with left-right ventilator. The ventilation rate of soundproof with gable roof is higher than that with flat roof. The ventilation rate and with mid-ventilator is higher than that with left-right ventilator the soundproof roof. Therefore, the ventilation performance of soundproof roof depends on the roof shape and ventilator location on the roof.

파이프루프공법이 적용된 터널의 지반거동 유한요소 해석 (Finite Element Analysis on the Ground Behavior for Tunnel with Pipe-roof)

  • 조선아;진규남;심영종
    • 토지주택연구
    • /
    • 제7권4호
    • /
    • pp.261-269
    • /
    • 2016
  • 파이프루프 공법은 개착공법 및 다른 비개착공법에 비해 경제적이고 시공이 비교적 단순한 공법으로 도심지 도로를 횡단하는 신규노선이나 상하수도 등 지하구조물에 적용 사례가 증가하고 있다. 국내외 연구 및 시공사례증가로 공법에 대한 기술적 발전 및 파이프루프의 성능 개선이 이루어지면서 단순 사전보강공법이 아닌 영구 지보재로서 활용가능성이 제기되었다. 따라서 본 연구에서는 파이프루프의 지보효과를 분석하고자 3차원 유한요소 수치해석을 수행하였으며 파이프루프 적용유무와 터널 단면 형상에 따른 지반의 거동을 변위와 응력 변화관점에서 분석하였다. 수치해석 결과 파이프루프를 적용할 경우 터널 상부 지반에서 뚜렷한 변위제어 효과와 함께 터널 단면형상이 지반 및 파이프루프 거동에 상당한 영향을 미치는 것을 확인하였다.

Unsteady aerodynamic forces on a vibrating long-span curved roof

  • Ding, Wei;Uematsu, Yasushi;Nakamura, Mana;Tanaka, Satoshi
    • Wind and Structures
    • /
    • 제19권6호
    • /
    • pp.649-663
    • /
    • 2014
  • The present paper discusses the characteristics of unsteady aerodynamic forces on long-span curved roofs. A forced vibration test is carried out in a wind tunnel to investigate the effects of wind speed, vibration amplitude, reduced frequency of vibration and rise/span ratio of the roof on the unsteady aerodynamic forces. Because the range of parameters tested in the wind tunnel experiment is limited, a CFD simulation is also made for evaluating the characteristics of unsteady aerodynamic forces on the vibrating roof over a wider range of parameters. Special attention is paid to the effect of reduced frequency of vibration. Based on the results of the wind tunnel experiment and CFD simulation, the influence of the unsteady aerodynamic forces on the dynamic response of a full-scale long-span curved roof is investigated on the basis of the spectral analysis.

RPS공법을 이용한 철도횡단터널의 2차원수치해석 (2-Dimensional Numerical Analysis of Crossing Tunnel under Railroad using Roof Panel Shield Method)

  • 신은철;노정민;이은수;김경모;김중희;정병철
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 지반공학 공동 학술발표회
    • /
    • pp.591-600
    • /
    • 2005
  • There are many cross tunnelling methods such as NTR, TRCM, Messer Shield, Front Jacking, and Pipe Roof Method. The advantages of adopting RPS(roof panel shield) method in crossing tunnel construction with comparing other existing cross tunnelling method are needed a little space and easy to change the direction of cutting shoe during the construction of pipe roof. The numerical analysis of RPS was performed for the application in the crossing tunnel under railroad. The earth pressure distribution and settlement were predicted when the RPS method was applied during the excavation for crossing railroad tunnel construction.

  • PDF

3차원 수치해석을 이용한 RPS 공법의 적용성 평가 (Estimation of RPS Method Using 3-Dimensional Numerical Analysis)

  • 노정민;신은철
    • 한국철도학회논문집
    • /
    • 제9권2호
    • /
    • pp.174-179
    • /
    • 2006
  • Recently, the crossing tunnel has been constructed frequently to connect the separated area by highway and railroad. The construction of crossing tunnel must be progressed while maintaining the existing traffic of the highway as well as railroad. There are many cross funnelling methods such as NTR, TRCM, Messer Shield, Front Jacking, and Pipe Roof Method. The advantages of adopting RPS(Roof Panel Shield) method in crossing tunnel construction with comparing other existing cross funnelling methods are needed a little volume of concrete and easy to change the direction of cutting shoe during the construction of pipe roof, The 3-dimensional numerical analysis of RPS to consider the arching effect was performed for the application in the crossing tunnel under railroad. The earth pressure distribution and settlement were predicted when the RPS method was applied during the excavation for crossing railroad tunnel construction.

Collapse mechanism of tunnel roof considering joined influences of nonlinearity and non-associated flow rule

  • Yang, X.L.;Xu, J.S.;Li, Y.X.;Yan, R.M.
    • Geomechanics and Engineering
    • /
    • 제10권1호
    • /
    • pp.21-35
    • /
    • 2016
  • Employing non-associated flow rule and Power-Law failure criterion, the failure mechanisms of tunnel roof in homogeneous and layered soils are studied in present analysis. From the viewpoint of energy, limit analysis upper bound theorem and variation principle are introduced to study the influence of dilatancy on the collapse mechanism of rectangular tunnel considering effects of supporting force and seepage force. Through calculation, the collapsing curve expressions of rectangular tunnel which are excavated in homogeneous soil and layered soils respectively are derived. The accuracy of this work is verified by comparing with the existing research results. The collapsing surface shapes with different dilatancy coefficients are draw out and the influence of dilatancy coefficient on possible collapsing range is analyzed. The results show that, in homogeneous soil, the potential collapsing range decreases with the decrease of the dilatancy coefficient. In layered soils, the total height and the width on the layered position of possible collapsing block increase and the width of the falling block on tunnel roof decrease when only the upper soil's dilatancy coefficient decrease. When only the lower soil's dilatancy coefficient decrease or both layers' dilatancy coefficients decrease, the range of the potential collapsing block reduces.

Effects of wind direction on the flight trajectories of roof sheathing panels under high winds

  • Kordi, Bahareh;Traczuk, Gabriel;Kopp, Gregory A.
    • Wind and Structures
    • /
    • 제13권2호
    • /
    • pp.145-167
    • /
    • 2010
  • By using the 'failure' model approach, the effects of wind direction on the flight of sheathing panels from the roof of a model house in extreme winds was investigated. A complex relationship between the initial conditions, failure velocities, flight trajectories and speeds was observed. It was found that the local flow field above the roof and in the wake of the house have important effects on the flight of the panels. For example, when the initial panel location is oblique to the wind direction and in the region of separated flow near the roof edge, the panels do not fly from the roof since the resultant aerodynamic forces are small, even though the pressure coefficients at failure are high. For panels that do fly, wake effects from the building are a source of significant variation of flight trajectories and speeds. It was observed that the horizontal velocities of the panels span a range of about 20% - 95% of the roof height gust speed at failure. Numerical calculations assuming uniform, smooth flow appear to be useful for determining panel speeds; in particular, using the mean roof height, 3 sec gust speed provides a useful upper bound for determining panel speeds for the configuration examined. However, there are significant challenges for estimating trajectories using this method.

저심도 터널주변의 NTR보강 중 발생한 도로면 침하의 특성 (Characteristics of Subsidence of a Road During the New Tubular Roof Construction Around a Shallow Tunnel)

  • 김치환
    • 터널과지하공간
    • /
    • 제28권6호
    • /
    • pp.620-634
    • /
    • 2018
  • 고속도로면으로 부터 심도는 약 7.5 m로 얕으나 너비가 약 21 m로 넓은 터널의 안정성을 확보하고 도로면의 침하를 최소화하기 위하여 NTR(New Tubular Roof)공법을 보조공법으로 이용하였다. 이 방법에 따라 터널 굴착예정선 둘레에 직경 2.3 m의 강관 13개를 종방향으로 압입하고 강관측벽을 뚫어 서로 연결한 후 강관내부와 연결공간을 콘크리트로 채워 라이닝을 먼저 만들었고 라이닝 내부 지반을 굴착하여 터널을 완성하였다. 여러 개의 강관을 순차적으로 압입함에 따라 이완영역이 서로 연결되면서 폭이 점차 넓어지는 공동으로 거동하여 침하증분이 커졌고 터널 폭이 가장 넓은 곳에 강관을 압입할 때 도로면 침하증분은 약 2.2 mm로 최대였으며 라이닝 시공 때 까지의 총침하는 약 7.7 mm이었다. 그리고 폭이 넓은 라이닝 내부 터널을 굴착하면서 약 4.3 mm의 침하가 추가로 발생하면서 시공종료 후 총침하는 약 11.8 mm가 되었다.