• Title/Summary/Keyword: tunnel monitoring

Search Result 356, Processing Time 0.027 seconds

Analysis of Whole Tunnel Stability by Using Rock Mass Classification and Mohr-Coulomb Analytical Solution (암반분류와 Mohr-Coulomb 이론해를 이용한 터널 전구간 안정성 분석)

  • Jung, Yong-Bok;Park, Eui-Seob;Ryu, Dong-Woo;Cheon, Dae-Sung
    • Tunnel and Underground Space
    • /
    • v.23 no.4
    • /
    • pp.280-287
    • /
    • 2013
  • Finite element or difference methods are applied to the analysis of the tunnel stability and they provide detailed behaviour of analyzed tunnel sections but it is rather inefficient to analyze all the section of tunnel by using these methods. In this study, the authors suggest a new stability analysis method for whole tunnel to provide an efficient and easy way to understand the behaviour of whole tunnel by using an analytical solution with the assumption of equivalent circular tunnel. The mechanical behaviour, radial strain and plastic zone radius of whole tunnel were analyzed and appropriate support pressure to maintain the displacement within the allowable limit was suggested after the application of this method to the tunnel. Consequently, it was confirmed that this method can provide quick analysis of the whole tunnel stability and the quantitative information for subsequent measures such as selection of tunnel sections for detailed numerical analysis, set up of the monitoring plan, and so on.

Case Studies on Applications of Convergence Measurement Systems at the Stages of Tunnel Construction and Maintenance (터널 시공 및 유지관리 단계 내공변위 계측시스템 적용사례 연구)

  • Lee, Dae-Hyuck;Han, Il-Yeong;Kim, Ki-Sun;Jin, Suk-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.3
    • /
    • pp.59-69
    • /
    • 2000
  • Three-dimensional total station system which integrated the instrument with Target Pin and TEMS 3D software developed by SKEC R&D center was applied to a tunnel excavation for monitoring of convergence and crown settlement. The efficiency of the system was proved as the result in the aspects of exact monitoring and prediction of rock conditions ahead of the face. To monitor the behavior of tunnel lining at the maintenance stage, DOCS system was applied to the subway tunnel section. Such many effects as the vibration of sensors, verification of the system efficiency, the effect of test trains operation, the variation of temperature and the effect of high voltage was checked. Thus the management scheme for tunnel maintenance was laid out as a proposal.

  • PDF

A Study on Environment Management System in Tunnel using Wireless Sensor Networks (무선 센서 네트워크를 이용한 터널 내 환경 관리 시스템에 관한 연구)

  • Joo, Yang-Ick;Kim, Jae-Wan
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.10
    • /
    • pp.1196-1203
    • /
    • 2013
  • In general, the cost of transceiver for wireless network configuration is more expensive than that for wired network. However, in case of environmental management system in a tunnel, the cost can be minimized by adopting low rate tranceiver because the amount of the exchanged data for tunnel monitoring is very small. When the obtained data from sensor node is sent directly to the corresponding command node, there is no need to consider routing problem of the data transfer. However in this case, sensor nodes are required to be implemented with high power transmitter and experience high energy consumption. To tackle this problem, relay nodes can be used to transfer the data of tunnel monitoring, and suitable routing protocols for selecting optimum path are needed. Therefore, in this paper, we propose a routing algorithm and a self-configuration protocol for environment management system in tunnel.

Efficiency assessment of L-profiles and pipe fore-poling pre-support systems in difficult geological conditions: a case study

  • Elyasi, Ayub;Moradi, Taher;Moharrami, Javad;Parnian, Saeid;Mousazadeh, Akbar;Nasseh, Sepideh
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.1125-1142
    • /
    • 2016
  • Tunneling is one of the challenging tasks in civil engineering because it involves a variety of decision making and engineering judgment based on knowledge and experience. One of the challenges is to construct tunnels in risky areas under shallow overburden. In order to prevent the collapse of ceilings and walls of a large tunnels, in such conditions, either a sequential excavation method (SEM) or ground reinforcing method, or a combination of both, can be utilized. This research deals with the numerical modeling of L-profiles and pipe fore-poling pre-support systems in the adit tunnel in northwestern Iran. The first part of the adit tunnel has been drilled in alluvial material with very weak geotechnical parameters. Despite applying an SEM in constructing this tunnel, analyzing the results of numerical modeling done using FLAC3D, as well as observations during drilling, indicate the tunnel instability. To improve operational safety and to prevent collapse, pre-support systems, including pipe fore-poling and L-profiles were designed and implemented. The results of the numerical modeling coupled with monitoring during operation, as well as the results of instrumentation, indicate the efficacy of both these methods in tunnel collapse prevention. Moreover, the results of modeling using FLAC3D and SECTION BUILDER suggest a double angle with equal legs ($2L100{\times}100{\times}10mm$) in both box profile and tee array as an alternative section to pipe fore-poling system while neither $L80{\times}80{\times}8mm$ nor $2L80{\times}80{\times}8mm$ can sustain the axial and shear stresses exerted on pipe fore-poling system.

The main considerations in the design and safety assessment case study for Deep & Large size of Tunnel station (대심도 대단면 터널정거장 설계시 주요고려사항 및 안정성 평가에 대한 사례 연구)

  • Jang, Sun-Jong;Hong, Jong-Wan;Jeon, Ki-Chan;Kim, Young-Min;Paik, Jin-Wook
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.462-469
    • /
    • 2011
  • The design of high-depth and large-section tunnel facilities has been increased lately. The purpose of the design is to avoid inference of existing facilities, enhance public relations and reducing the size of the station, which is advantageous for effective use of underground spaces. Diverse downtown tunnel experience, advanced excavation equipment, reinforcement methods, monitoring technologies and numerical analysis made the design possible. This paper is to introduce the design of high-depth and large-section tunnel facilities via Gimpo airport area of Deagok-Sosa railway BTL project of double-tracking.

  • PDF

Application of New Back Analysis Method for Landslide around Portal (터널 갱구부 주변의 산사태를 고려한 역해석법에 관한 검토)

    • Tunnel and Underground Space
    • /
    • v.8 no.1
    • /
    • pp.46-52
    • /
    • 1998
  • The author conducted new back analysis method using monitoring data to a landslide which occurred around portal. In this case, because the tunnel being located under the sliding plane of the landslide, calculated value from the ordinary back analysis in which considered only stress release by the tunnel excavation didn't fit the measured value. Then, in the new method, a body force as the movement of the landslide mass was added to the ordinary back analysis and good results were obtained. Furthermore, the author carried out stability analysis of the landslide with the data of the back analysis and examined the loosened area and decreasing og the sliding plane strength due to the tunnel excavation.

  • PDF

An application of damage detection technique to the railway tunnel lining (철도터널 라이닝에 대한 손상도 파악기법의 현장적용)

  • Bang Choon-seok;Lee Jun S.;Choi Il-Yoon;Lee Hee-Up;Kim Yun Tae
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1142-1147
    • /
    • 2004
  • In this study, two damage detection techniques are applied to the railway tunnel liner based on the static deformation data. Models based on uniform reduction of stiffness and smeared crack concept are both employed, and the efficiency and relative advantage are compared with each other. Numerical analyses are performed on the idealized tunnel structure and the effect of white noise, common in most measurement data, is also investigated to better understand the suitability of the proposed models. As a result, model 1 based on uniform stiffness reduction method is shown to be relatively insensitive to the noise, while model 2 with the smeared crack concept is proven to be easily applied to the field situation since the effect of stiffness reduction is rather small. Finally, real deformation data of a rail tunnel in which health monitoring system is in operation are introduced to find the possible damage and it is shown that the prediction shows quite satisfactory result.

  • PDF

A Study on Developing a High-Resolution Digital Elevation Model (DEM) of a Tunnel Face (터널 막장면 고해상도 DEM(Digital Elevation Model) 생성에 관한 연구)

  • Kim, Kwang-Yeom;Kim, Chang-Yong;Baek, Seung-Han;Hong, Sung-Wan;Lee, Seung-Do
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.931-938
    • /
    • 2006
  • Using high resolution stereoscopic imaging system three digital elevation model of tunnel face is acquired. The images oriented within a given tunnel coordinate system are brought into a stereoscopic vision system enabling three dimensional inspection and evaluation. The possibilities for the prediction ahead and outside of tunnel face have been improved by the digital vision system with 3D model. Interpolated image structures of rock mass between subsequent stereo images will enable to model the rock mass surrounding the opening within a short time at site. The models shall be used as input to numerical simulations on site, comparison of expected and encountered geological conditions, and for the interpretation of geotechnical monitoring results.

  • PDF

Implementation of the Smartphone Based Carpal Tunnel Syndrome Monitoring System (스마트폰 기반의 손목터널증후군 모니터링 시스템 구현)

  • Hwang, Woo-Jin;Yang, Yoon-Jeong;Jeong, Do-Un
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.827-829
    • /
    • 2016
  • 장시간 컴퓨터나 스마트폰을 사용하는 사람들에게서 손목터널증후군(Carpal Tunnel Syndrome)의 발생 가능성이 높아지며, 이를 방지하기 위해서는 꾸준한 손목 스트레칭과 위험성의 모니터링을 통한 사용자 피드백이 중요하다. 본 연구에서는 사용자 스스로가 손목 터널 증후군의 위험성을 인지하고, 손목 스트레칭 할 수 있도록 손목 터널 증후군 예방 시스템(Carpal Tunnel Syndrome Prevention System, CTSPS)을 구현하였다. 전체 시스템은 하드웨어와 소프트웨어로 구성되며, 소프트웨어는 사용자가 설정한 사용 시간과 잠금 시간을 바탕으로 알림 및 잠금을 수행한다. 이때 사용자는 아두이노와 가속도 센서를 이용하여 손목 스트레칭 할 수 있으며, 사용 패턴을 분석하여 사용자에게 맞는 생활 가이드를 제공할 수 있다. 구현된 시스템을 평가하기 위해 피실험자 5명을 대상으로 3일간 스마트폰 사용 시간 및 터치 횟수를 측정하였고, 설문조사를 수행한 결과 스마트폰의 사용 빈도가 줄었으며, 통증 완화 등 긍정적인 효과를 확인할 수 있었다.

  • PDF

SEISMIC MONITORING IN SURFACE MINES

  • Ajay Kumar, L.;David Raj, D. Edwin;Renaldy, T. Amrith;Vinoth, S.
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.174-180
    • /
    • 2009
  • This paper gives a brief review of seismicity and seismic monitoring in surface mines. A summary of various researches related to seismicity is presented. Our research focuses on the understanding of seismicity and the application of analytical techniques to seismicity. Seismic monitoring plays an important role in the identification of potential failure planes and thereby predict potential failures. Much of the instrumentation used in our research is derived from earthquake monitoring systems. The major aspects in seismic monitoring are an instrumentation used, size of the network and data acquisition systems. Seismic monitoring in surface mines could be successfully applied to the improvement of safety standards in slope stability.