• Title/Summary/Keyword: tunnel failure

Search Result 449, Processing Time 0.032 seconds

A Numerical Study on the Estimation of Safety Factor of Tunnels Excavated in Jointed Rock Mass (절리암반 터널의 안전율 평가를 위한 수치 해석적 연구)

  • You, Kwang-Ho;Park, Yeon-Jun;Kang, Yong
    • Tunnel and Underground Space
    • /
    • v.11 no.3
    • /
    • pp.279-288
    • /
    • 2001
  • Jointed rock mass can be analyzed by either continuum model or discontinuum model. Finite element method or finite difference method is mainly used for continuum modelling. Although discontinuum model is very attractive in analyzing the behavior of each block in jointed blocky rock masses, it has shortcomings such that it is difficult to investigate each joint exactly with the present technology and the amount of calculation in computer becomes trio excessive. Moreover, in case of the jointed blocky rock mass which has more than 2 dominant joint sets, it is impossible to model the behavior of each block. Therefore, a model such as ubiquitous joint model theory which assumes the rock mass as a continuum, is required. In the case of tunnels, unlike slopes, it is not easy to obtain safety factor by utilizing analysis method based on limit equilibrium method because it is difficult to assume the shape of failure surface in advance. For this reason, numerical analyses for tunnels have been limited to analyzing stability rather than in calculating the safety factor. In this study, the behavior of a tunnel excavated in jointed rock mass is analyzed numerically by using ubiquitous joint model which can incorporate 2 joint sets and a method to calculate safety factor of the tunnel numerically is presented. To this end, stress reduction technique is adopted.

  • PDF

Numerical Analysis of Peak Uplift Resistance of Buried Pipeline in Sand and Soft Clay (연약 점토와 사질토에 묻힌 파이프라인의 극한 인발저항력 산정)

  • Kwon, Dae-Hean;Seo, Young-Kyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.227-232
    • /
    • 2017
  • Subsea pipelines are one of the most important structures used to transport fluids such as oil and natural gas in offshore environments. The uplift behavior of the pipeline caused by earthquakes and buoyancy can result in a pipeline failure. The objective of this study is to examine the peak uplift resistance through parametric studies with numerical modeling by PLAXIS 3D Tunnel. The effects of the embedment ratio and pipe diameter were first examined for uplift resistance in sand and soft clay conditions. Then the length of geogrid layers and the number of geogrid layers were examined in terms of ability to resist uplift behavior.

Numerical Analysis of Peak Uplift Resistance for Pipelines Buried In Sand

  • Kwon, Dae-Hean;Seo, Young-Kyo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.158-164
    • /
    • 2017
  • A pipeline is one of the most important structures for the transportation of fluids such as oil, natural gas, and wastewater. The uplift behavior of pipelines caused by earthquakes and buoyancy is one of the reasons for the failure of pipelines. The objective of this study is to examine the peak uplift resistance using parametric studies with numerical modeling of PLAXIS 3D Tunnel. The effects of burial depth and pipe diameter on the uplift resistance of loose and dense sand were first examined. Subsequently, the effects of the length of geogrid layers and the number of geogrid layers were examined to prevent uplift behavior.

An Analysis of Stability on Rock Slope by Changing Water Level (지하수위 변화에 따른 암반사면의 안정성 해석)

  • Jang, Hyong-Doo;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.20 no.1
    • /
    • pp.7-14
    • /
    • 2010
  • A quarry with 105 m height large cut slope was analyzed. Beside RMR and SMR methods, FLAC2D were adopted to analyze slope stability. As a result, slope of andesite had a possibility of failure. Wet slope showed low safety factor. Soil nailing was recommended to solve it. Since safety factor of slope largely depend on underground level, investigation for it seemed necessary.

SEISMIC MONITORING IN SURFACE MINES

  • Ajay Kumar, L.;David Raj, D. Edwin;Renaldy, T. Amrith;Vinoth, S.
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.174-180
    • /
    • 2009
  • This paper gives a brief review of seismicity and seismic monitoring in surface mines. A summary of various researches related to seismicity is presented. Our research focuses on the understanding of seismicity and the application of analytical techniques to seismicity. Seismic monitoring plays an important role in the identification of potential failure planes and thereby predict potential failures. Much of the instrumentation used in our research is derived from earthquake monitoring systems. The major aspects in seismic monitoring are an instrumentation used, size of the network and data acquisition systems. Seismic monitoring in surface mines could be successfully applied to the improvement of safety standards in slope stability.

Truncus Arteriosus, Type I one case report (총동맥간증 [1 형] 의 치험례)

  • 송인석
    • Journal of Chest Surgery
    • /
    • v.18 no.3
    • /
    • pp.414-422
    • /
    • 1985
  • Truncus arteriosus is one of the rare cyanotic congenital cardiac anomalies and thought to be result from complete or partial failure of trunco-conal septum. A single arterial trunk receiving blood from both ventricles supplies the coronary, pulmonary and systemic circulation. The symptoms were usually related to the degree of the pulmonary blood flow and functional status of truncal valve, and mostly appeared within the first two months of life. The prognosis is generally considered to be poor in spite of successful surgical correction. This report is a case of 13 years old female with type I truncus arteriosus, which was successfully corrected using a intracardiac Dacron tunnel graft[semilunar, 18mm] from VSD to the truncal valve, and a extra-cardiac lonescu-Shiley valved[20mm] Dacron conduit [21mm] from RV to the pulmonary artery[Rastelli operation].

  • PDF

A Study fo rthe determination of optimum cutangle for the heavily jointed rock slope (절리가 심하게 발달된 암반사면의 최적 절취각 고찰)

  • 홍예성;조태진;한공창
    • Tunnel and Underground Space
    • /
    • v.6 no.2
    • /
    • pp.166-174
    • /
    • 1996
  • Stability of rock slope is greatly affected by the geometry and strength of discontinuities developed in the rock mass. In this study an analytical method which is capable of analyzing the effect of relative orientation between the discontinuities and the slope face on the safety of slope by assessing their vector components was used to evaluate the stability and the maximum cut-angle for the proposed slope design. The results of computerized vector analysis revealed that slope area under investigation might be divided into 3 sections of different face directions. The safety factors for benches in each 3 sections were calculated using the limit-equilibrium theory. Then, by utilizing the concept of probabilistic risk analysis, the susceptibility of entire slope failure was estimated. Based on the distribution of safety factor in each bench, the maximum cut angle of each section could be selected differently ot achieve the permanent stability of the entire slope.

  • PDF

Transposition of great arteries [S.D.D.] with VSD and PS: report of an autopsy case (완전대혈관전위증 [S.D.D., Kidd type IV] 에 대한 Rastelli 수술 치험)

  • 이명희
    • Journal of Chest Surgery
    • /
    • v.15 no.3
    • /
    • pp.331-337
    • /
    • 1982
  • Complete TGA is a common congenital cardiovacular anomaly, and without palliative or corrective surgery, the infant born with TGA rarely survives the first year of life. Hemodynamically, recirculated blood flow in the systemic and pulmonary circuit has a key role in systemic arterial oxygen saturation and the status of the pulmonary vascular bed. Recently a d-TGA with VSD and PS, in a 12 year old male patient had been tried for inversion of the ventricular flow with Rastelli operation. An intracardiac tunnel was constructed between the VSD and the aortic orifice to connect the ventricle to the aorta. The right ventricle was connected with the pulmonary circulation by anastomosis of an valved conduit between the right ventricle and the distal end of the pulmonary artery. During the postop, period, the irreversible renal failure, accompanied by metabolic acidosis and pulmonary edema, occured under relative stabilized cardiac performance state. The autopsy was done, which revealed diffuse infarcted area in both kidney and preserved intra & extracardiac graft constructed.

  • PDF

Windborne debris risk analysis - Part I. Introduction and methodology

  • Lin, Ning;Vanmarcke, Erik
    • Wind and Structures
    • /
    • v.13 no.2
    • /
    • pp.191-206
    • /
    • 2010
  • Windborne debris is a major cause of structural damage during severe windstorms and hurricanes owing to its direct impact on building envelopes as well as to the 'chain reaction' failure mechanism it induces by interacting with wind pressure damage. Estimation of debris risk is an important component in evaluating wind damage risk to residential developments. A debris risk model developed by the authors enables one to analytically aggregate damage threats to a building from different types of debris originating from neighboring buildings. This model is extended herein to a general debris risk analysis methodology that is then incorporated into a vulnerability model accounting for the temporal evolution of the interaction between pressure damage and debris damage during storm passage. The current paper (Part I) introduces the debris risk analysis methodology, establishing the mathematical modeling framework. Stochastic models are proposed to estimate the probability distributions of debris trajectory parameters used in the method. It is shown that model statistics can be estimated from available information from wind-tunnel experiments and post-damage surveys. The incorporation of the methodology into vulnerability modeling is described in Part II.

Study on the effective earthing method in underground section of railways (철도 지하구간에 대한 효율적인 접지방안에 대한 연구)

  • Kim Yang-Soo;Kim Jae-Moon
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.767-775
    • /
    • 2005
  • Power Supply System for electric railways is diversified with technical development and is required high technologies. especially, recently there is required many research and development for earthing to ensure safety of people and protection of installations. Generally, leakage resistance is high between rail and ground at tunnel section of subway. because of short circuit of feeding line, earthing interference by transient overvoltage between signals and communication system, and insulation failure, it can damage to human and equipments To minimize these obstacles, earthing equipment is installed at underground section of railway, but it brings about problems in accordance with operate each earthing system to be not enough required protection provisions for electrified railways. This paper proposes effective earthing method to be concerned about installation cost and maintenance. The validity of the proposed earth method is verified by simulation results at underground section of railways.

  • PDF