• Title/Summary/Keyword: tunnel face

Search Result 416, Processing Time 0.029 seconds

A Study of Efficient Ventilation System in Deep Mines (심부 광산의 효율적 환기 시스템에 관한 연구)

  • Song, Doo-Hwan;Kim, Yun-Kwang;Kim, Teak-Soo;Kim, Sang-Hwan
    • Clean Technology
    • /
    • v.22 no.3
    • /
    • pp.168-174
    • /
    • 2016
  • The working environment is deteriorated due to a rise in temperature of a coal mine caused by increase of its depth and carriage tunnels. To improve the environment, the temperature distribution resulted by using the fan type ventilation system aiming for the temperature drop is calculated by using a fluid dynamic analysis program. The analysis shows that A coal mine needs 6,152 m3 min-1 for in-flow ventilation rate but the total input air flowrate is 4,710 m3 min-1, 1,442 m3 min-1 of in-flow ventilation rate shortage and the temperature between the carriage tunnel openings and the workings with exhausting ventilation system type is 2~3 ℃ less than that with blowing ventilation system type. The exhausting ventilation system type would be more effective than blowing ventilation system when the distance between the carriage tunnel openings and the workings is relatively far.

Performance Experiment and Evaluation of Water jet by the Explosives Position in Water-bag blasting using the Mist Guider (분무 가이더를 이용한 워터 백 기폭 시 폭약의 위치에 따른 분사 성능실험 및 평가)

  • Kim, Seung-Jun;Kim, Jung-Gyu;Ko, Young-Hun;Jung, Seung-Won;Baluch, Khaqan;Jin, Guochen;Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.36 no.3
    • /
    • pp.29-38
    • /
    • 2018
  • With the recent industrial developments and economic development nationally, there has been a rapidly increasing demand for the use of underground space as locations for establishing social infrastructure and various convenience facilities. In this study, a mist-control system was developed to reduce the generation of dust in underground blasting. To enhance the dust-reduction effect, a guiding device was developed which is capable of adjusting the direction of the spray toward's the blasting face of mine or tunnel. A numerical analysis was performed by using the AUTODYN software, and results were compared with those published in basic experiments. To verify the mist-diffusion effect according to the position of explosives in a water bag, numerical analyses were conducted for the following cases: Explosives were set in the middle, and in the bottom of the water bag. The optimum condition was external detonation and center charge. The mist particle size from the result was suitable for the reduction of dust after blasting in underground mine and tunnel.

A 6 m cube in an atmospheric boundary layer flow -Part 2. Computational solutions

  • Richards, P.J.;Quinn, A.D.;Parker, S.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.177-192
    • /
    • 2002
  • Computation solutions for the flow around a cube, which were generated as part of the Computational Wind Engineering 2000 Conference Competition, are compared with full-scale measurements. The three solutions shown all use the RANS approach to predict mean flow fields. The major differences appear to be related to the use of the standard $k-{\varepsilon}$, the MMK $k-{\varepsilon}$ and the RNG $k-{\varepsilon}$ turbulence models. The inlet conditions chosen by the three modellers illustrate one of the dilemmas faced in computational wind engineering. While all modeller matched the inlet velocity profile to the full-scale profile, only one of the modellers chose to match the full-scale turbulence data. This approach led to a boundary layer that was not in equilibrium. The approach taken by the other modeller was to specify lower inlet turbulent kinetic energy level, which are more consistent with the turbulence models chosen and lead to a homogeneous boundary layer. For the $0^{\circ}$ case, wind normal to one face of the cube, it is shown that the RNG solution is closest to the full-scale data. This result appears to be associated with the RNG solution showing the correct flow separation and reattachment on the roof. The other solutions show either excessive separation (MMK) or no separation at all (K-E). For the $45^{\circ}$ case the three solutions are fairly similar. None of them correctly predicting the high suctions along the windward edges of the roof. In general the velocity components are more accurately predicted than the pressures. However in all cases the turbulence levels are poorly matched, with all of the solutions failing to match the high turbulence levels measured around the edges of separated flows. Although all of the computational solutions have deficiencies, the variability of results is shown to be similar to that which has been obtained with a similar comparative wind tunnel study. This suggests that the computational solutions are only slightly less reliable than the wind tunnel.

Study on Shearing Properties and Behavior of the Grout-reinforced Underground with ERP Pipes (FRP 그라우팅 보강지반의 전단특성에 관한 연구)

  • 최용기;박종호;권오엽;이상덕
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.73-81
    • /
    • 2002
  • Nowadays , the grouted-reinforcing method, which is called FRP(Fiberglass-reinforced-plastic) pipe .reinforcing method, has been introduced in the community of pound reinforcements. The resistance to corrosion and chemical attack high strength to weight ratio, and ease of handling make these pipes a better alternative to steels in tunnel. However, to fully utilize FRP pipes as grouted reinforcing members at the face and the crown in tunnel, their mechanical properties and behaviors and the grout-reinforced underground have to be verified. Laboratory shear tests were conducted to evaluate the mechanical properties for FRP pipes, the grout-reinforced members and the grout-reinforced body of FRP pipes. According to the test results, it was observed that FRP pipes play a dominant role in shearing behavior of the grout-reinforced members and that their shearing resistance exerts after the shearing displacement increases to some extent.

A Study on the Improvement of a Charging and Initiating Method in a Tunnel Excavation (터널굴진에서 장약 및 기폭방법 개선에 관한 연구)

  • Oh, E-Hwan;Won, Yeon-Ho;Lim, Han-Uk
    • Explosives and Blasting
    • /
    • v.24 no.2
    • /
    • pp.1-8
    • /
    • 2006
  • In this study, a charging density has been differently applied to all holes to improve an excavated length per round on excavating a tunnel in quartzite mine and to prevent a dead pressure phenomena and sintering phenomena. A composition initiating system using simultaneously a direct initiating system and a indirect initiating system with 2 detonators in one hole has been introduced to cut holes. As a bottom part which is difficult to make a free face are charged with a higher charging density and a column part are charged with a lower charging density, the composition charging and initiating system which the power of explosives works effectively in the rock mass is developed. As the results, a dead pressure phenomena and a sintering phenomena being often produced in a hard rock or in a long hole could be prevented. Besides, the workability was improved by about 15% and the specific charge was reduced to about 20%, as an excavated length vs. a drilled length per round could be increased over 95%.

Effect of RMR and rock type on tunnel drilling speed (RMR과 암석종류가 터널 천공속도에 미치는 영향)

  • Kim, Hae-Mahn;Lee, In-Mo;Hong, Chang-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.4
    • /
    • pp.561-571
    • /
    • 2019
  • Drilling and charging of the blast holes during NATM tunneling works take more than 30% of construction time among the whole tunneling work process. Prediction of ground condition ahead of tunnel face has been studied by several researchers by correlating percussion pressure and drilling speed during tunneling work with the ground condition and/or RMR values. However, most of the previous researches were conducted in the granite rock condition which is the most representative igneous rock in the Korean peninsula. In this study, drilling speeds in igneous rocks were analyzed and compared with those in sedimentary rocks (most dominantly composed of conglomerates, sandstones, and shales) under the similar RMR ranges; it was identified that the drilling speed is pretty much affected by rock types even in a similar RMR range. Under the similar RMR values, the drilling speed was faster in sedimentary rocks compared with that in igneous rock. Moreover, while the drilling speed was not much affected by change of the RMR values in igneous rocks, it became faster in sedimentary rocks as the RMR values got lower.

Behavior of arch slab in the shallow tunnel constructed perpendicular to slope by semi-cut-and-cover method (편경사지에 굴착한 반개착식 천층터널에서 아치슬래브의 거동)

  • Yang, Jae-Won;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.2
    • /
    • pp.157-164
    • /
    • 2010
  • Recently, the number of shallow tunnel construction increases to improve the structural safety and environment-friendliness. In semi-cut-and-cover Method, ground is excavated to the crown arch level and arch slab is set to backfill before the excavation of lower face. In this study, laboratory model tests was performed to clarify the behavior of the arch slab constructed perpendicular to the slope. Results show that Arch slab is affected by perpendicular to the slope and bedrocks. Negative moment at the upper part of the arch slab at hillside and positive moment at the upper part at the other side are generated as perpendicular to the slope increases. Reaction load at the hillside support was larger than that at the other side.

COARSE GRID LARGE-EDDY SIMULATION OF FLOW OVER A HEAVY VEHICLE (화물차 주위 유동의 성긴 격자 큰에디모사)

  • Lee, S.;Kim, M.;You, D.;Kim, J.J.;Lee, S.J.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.30-35
    • /
    • 2016
  • In order to investigate effects of grid resolution on large-eddy simulation of flow over a heavy vehicle, large-eddy simulations over the vehicle with coarse grid and fine grid are conducted. In addition, comparison of drag coefficients with the experimental data obtained by a wind tunnel experiment is conducted. Both of the drag coefficients of coarse grid and fine grid large-eddy simulation show good agreement with the experimental data. Flow fields obtained by the coarse and the fine grid large-eddy simulation are compared in the vehicle frontal-face region, the vehicle rear wheel region, and the vehicle base region. Coarse grid large-eddy simulation shows good agreement with the fine grid large-eddy simulation in the vehicle front face region and the vehicle rear wheel region, since the flow over the present vehicle is dominated by flow separation which is geometrically pre-determined, not by the skin friction which is known to be sensitive to grid resolution.

Improvement of Tunnelling Speed in Full-Face Mechanical Excavation (기계굴착에서 굴착속도의 발전경향분석)

  • Park, Chul-Whan;Park, Chan;Cheon, Dae-Sung;Synn, Joong-Ho
    • Tunnel and Underground Space
    • /
    • v.17 no.3 s.68
    • /
    • pp.225-233
    • /
    • 2007
  • Because of Norwegian topography as valleys and fjords, a large number of tunnels has been built and 59 of them have been excavated by TBM for last 30 years. Prognosis technology has been developed and improved through lots of TBM experiences, and the NTNU prediction model has been completed. This paper focuses the improvement of net penetration rate and advance rate in 14 Norwegian and 4 Koran TBM tunnelling sites of which data were reported. Through this period, net penetration rate as well as advance rate were increased to double with the improvement of disc cutter size and cutter arrangement in Norway. These rates in Korea were also increased for 15 years even though the rates were lower compared to Norwegian. It is estimated that these low rates were mainly caused by using disc cutters less than 17 inch diameter. It is expected that net penetration rate and advance rate can be increased by improvement of machine and tunnelling technology, especially by using 17 or 19 inch of the disc cutter size in the Korean full face mechanical tunnelling site.

Current Status of Rock Cutting Technique Using Undercutting Concept (언더커팅 개념을 적용한 암반절삭기술의 현황 분석)

  • Jeong, Hoyoung;Choi, Seungbeom;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.148-156
    • /
    • 2019
  • In urban area, the use of mechanical excavators (e.g., TBM and roadheader) has been increasing in construction of tunnelling and underground space. The undercutting technology, which is modified from the conventional rock-cutting concept, has been developed by advanced countries. Therefore, research on the latest technology of mechanical excavation is required, and keeping carrying out research on conventional mechanical tunneling methods at the same time. In this study, as a fundamental study of the undercutting technique, the principle and concept of the undercutting were introduced, as well as the current status of the research of advanced countries. The undercutting is applicable as a full-face excavation method for the tunnels and underground spaces, as well as an auxiliary(partial-face excavation) method for extension of the existing tunnels.