• Title/Summary/Keyword: tunnel face

Search Result 418, Processing Time 0.028 seconds

Development and application of 3D migration techniques for tunnel seismic exploration (터널내 탄성파 탐사의 3차원 구조보정기법 개발 및 현장적용)

  • Choi, Sang-Soon;Han, Byeong-Hyeon;Kim, Jae-Kwon;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.3
    • /
    • pp.247-258
    • /
    • 2004
  • Two 3-dimensional data processing techniques to predict the fractured zone ahead of a tunnel face by the tunnel seismic survey were proposed so that the geometric formation of the fractured zone could be estimated. The first 3-dimensional data processing technique was developed based on the principle of ellipsoid, The input data needed for the 3D migration can be obtained from the 2-dimensional tunnel seismic prediction (TSP) test where the TSP test should be performed in each sidewall of a tunnel. The second 3-dimensional migration technique that was developed based on the concept of wave travel plane was proposed. This technique can be applied when the TSP is operated with sources in one sidewall of a tunnel while the receivers are installed in both sidewalls. New migration technique was applied to an in-situ tunnelling site. The 3-dimensional migration was performed using measured TSP data and its results were compared with the geological investigation results that were monitored during tunnel construction. This comparison revealed that the proposed migration technique could reconstruct the discontinuity planes reasonably well.

  • PDF

Visualization of Tunneling Using a BIM-based 3D Tunnel Model (BIM 기반 3D 터널 모델 가시화에 관한 연구)

  • Yoo, Wan-Kyu;Kim, Jinhwan;Zheng, Xiumei;Kim, Jeong-Heum;Gi, Sang-bok;Kim, Chang-Yong
    • The Journal of Engineering Geology
    • /
    • v.25 no.3
    • /
    • pp.395-401
    • /
    • 2015
  • An investigation of the tunnel face, as well as related measurement data collected during tunneling, is necessary for rock classification and to determine tunnel stability and the cost efficiency of tunneling. However, systematic management and efficient use of such data have yet to be successfully implemented domestically, and the number of experts in this field in Korea is limited. Thus, measures to develop and implement systematic management and effective use of data and expertise are urgently needed. This study aimed to develop measures to efficiently provide online tunnel design and construction data using a building information model (BIM)-based data visualization approach, based on an integrated 3D tunnel model generation module and a web viewer module. The development technology was verified through ○○ tunnel design and construction. Directions for future study and system improvement are proposed.

Characteristics of Near-field Ground Vibration in Tunnel Blasting using Electronic Detonators (전자뇌관을 이용한 터널발파의 근거리 지반진동 특성)

  • Kim, Yong-Pyo;Kim, Gab-Soo;Son, Young-Bok;Kim, Jae-Hoon;Kim, Hee-Do;Lee, Jun-Won
    • Explosives and Blasting
    • /
    • v.31 no.1
    • /
    • pp.76-86
    • /
    • 2013
  • In order to control tunnel blast vibration for adjacent facilities using electronic detonator, Understanding about the characteristics of near-field ground vibration is necessary. The purpose of this paper is to analyze effects of Cut-area and Extension-area vibration in relation to decision of tunnel blast vibration. These data were obtained at the top monitoring positions while ${\bigcirc}{\bigcirc}{\bigcirc}$ tunnel site of "Wonju~Gangneung double railroad section ${\bigcirc}{\bigcirc}$ construction" was passing under the existing road. Thus, tunnel blasting was conducted by tunnel electronic blasting system with 0.01% high delay-time accuracy. It can be possible that not only keeping maximum charge per delay-time but also preventing amplification of vibration which is occurred by delay-time scatter using common detonators. Additionally, V-Cut was changed into Burn-Cut. The results was presented that vibration level of extension-holes were higher than Cut-holes. Therefore, near-field ground vibration can be effectively minimized using electronic detonators in the Cut area. And also more effective way to reduce tunnel blast vibration is full-face blast using electronic detonators.

Suggestion of a Design Method for UAM (강관 다단 그라우팅 공법(UAM)의 설계법 제안)

  • 박이근;임종철
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.97-106
    • /
    • 2004
  • In case of tunnel construction with a shallow soil cover in cohesionless soils or highly weathered rocks, reinforcement measures are required for a tunnel stability during the tunnel construction. Recent developments show that the use of Umbrella Arch Method(UAM) as tunnel reinforcement and water cut-off in domestic projects has increased. Unfortunately, guidelines for the design and construction of UAM have not been established, only empirical designs and applications in tunnel construction have been performed so far. In this study, behaviour of the steel pipes installed on the tunnel roof was analyzed through the monitoring of bending and axial stresses of the pipes with the advance of the tunnel face. The monitoring results were used in the establishment of the loading mechanism around the pipe. This paper suggests, the guidelines used in the determination of the total length, overlapping length and lateral spacing of the reinforcing pipes obtained from the established loading mechanism.

Suggestion of empirical formula between FPI and specific energy through analysis of subsea tunnel excavation data (해저 터널 굴진자료 분석을 통한 FPI와 비에너지의 경험식 제시)

  • Kim, Kyoung-Yul;Bae, Du-San;Jo, Seon-Ah;Ryu, Hee-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.4
    • /
    • pp.687-699
    • /
    • 2018
  • The construction of subsea tunnel differs from that of inland tunnel because of high water pressure due to sea water level and difficulties to reinforce the ground under construction. Therefore, it is very important to prevent trouble in advance when the subsea tunnel is constructed. In this paper, we established lots of databases about characteristics of geological and mechanical parameters on the construction of subsea tunnel using micro slurry TBM which depth is about 60 m. The correlation analysis is conducted to confirm the effect of thrust, torque and RPM among the excavation database on the net penetration rate. Also, An empirical formula is suggested to predict the net penetration rate through the correlation analysis between FPI (Field Penetration Index) and specific energy from the subsea tunnel excavation database.

Inference of RMR Value Using Fuzzy Set Theory and Neuro-Fuzzy Techniques (퍼지집합이론 및 뉴로-퍼지기법을 이용한 RMR 값의 추론)

  • 배규진;조만섭
    • Tunnel and Underground Space
    • /
    • v.11 no.4
    • /
    • pp.289-300
    • /
    • 2001
  • In the design of tunnel, it contains inaccuracy of data, fuzziness of evaluation, observer error and so on. The face observation during tunnel excavation, therefore, plays an important role to raise stability and to reduce supporting cost. This study is carried out to minimize the subjectiveness of observer and to exactly evaluate the natural properties of ground during the face observation. For these purpose, fuzzy set theory and neuro-fuzzy techniques in artificial intelligent techniques are applied to the inference of the RMR value from the observation data. The correlation between original RMR vague and inferred RM $R_{_FU}$ and RM $R_{_NF}$ values from fuzzy set theory and neuro-fuzzy techniques is investigated using 46 data. The results show that good correlation between original RMR value and infected RM $R_{_FU}$ and RM $R_{_NF}$ value is observed when the correlation coefficients are |R|=0.96 and |R|=0.95 respectively. From these results, applicability of fuzzy set theory and neuro-fuzzy techniques to rock mats classification is proved to be sufficiently high enough. enough.

  • PDF

A Study on the Impermeable Effect by Grouting in the Subsea Tunnel (해저터널에서 주입에 의한 차수효과 연구)

  • Kim, Seunghwan;Lim, Heuidae;Yoon, Seongmin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.6
    • /
    • pp.5-19
    • /
    • 2017
  • In this study, the effect of rock mass curtain grouting was investigated by analyzing the correlation between the parameters of the RMR & grout injection volume, Lugeon value & RQD, Lugeon value & cement injection volume. In order to investigate the effect of rock mass curtain grouting, we analyzed the grout injection volume of 315 curtain grouting holes at 9 tunnel face of NATM Subsea tunnels in gneiss area. The total grout injection volume in the Subsea tunnels study was slightly changed in some tunnels face but decreased with increasing the rating of parameters in spacing of discontinuity (R3, Js) and groundwater condition (R5). The geological anomalies of seismic survey (3D, TSP) and the inflow of probe hole were found to be more correlated of relative than the parameters of RMR. The unit injection volume was found to decrease with higher ratings in the parameters of the RMR except the weathering degree of the discontinuity (Jc, R4). The correlation between RQD and Lugeon values is not significant, but it can be confirmed that the Lugeon value tends to decrease as the RQD value increases.

A Study on the Development of the Rock Blastability Classification and the Methods for Minimizing Overbereak in Tunnel (터널 굴착면 여굴 최소화를 위한 발파암 분류(안) 및 공법 개발 연구)

  • 이태노;김동현;서영화
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.303-310
    • /
    • 2002
  • Overbreak occurred inevitably in a tunnel excavation, Is the main factor for increasing cost and time in tunnel projects. Furthermore the damage to the remained rock mass related to the overbreak can give rise to a serious safety problem in tunnels. As a rule of thumb, causes for the overbreak are inaccuracy in drilling, the wrong design of blasting and selection of explosives, and heterogeneity in rock mass. Specially, the geological features of the rock mass around periphery of an excavation are very important factors, so a lot of researches have been conducted to describe these phenomena. But the quantitative geological classification of the rock mass for the overbreak and the method for decreasing the amount of the overbreak have not been established. Besides, the technical improvement of the charge method is requested as explosives for the smooth blasting have not functioned efficiently. In this study, the working face around periphery of an excavation has been continuously sectionalized to 5∼6 parts, and the new Blastability Index for the overbreak based on 6 factors of RMD(Rock Mass Description), UCS(Uniaxial Compressive Strength) JPS(Joint Plane Spacing), JPO(Joint Plane Orientation), JPA(Joint Plane Aperture) and FM(Filling Material) is proposed to classify sections of the working face. On the basis of this classification, the distance between contour holes and the charging density are determined to minimize the overbreak. For controlling the charging density and improving the function of explosives, the New Deck Charge(N.D.C) method utilizing the deck charge method and detonation transmission in hole has been developed.

  • PDF

Analysis of displacement behavior in fractured fault and groundwater flow under tunnel excavation (터널굴착중 굴착면 단층파쇄대와 지하수 용출 구간에서 단계별 변위 거동 특성 분석)

  • Kim, Nag-Young;Park, Gun-Tae;Baek, Seung-Cheol;Lee, Kang-Hyun;Choi, Jin-Woong;Her, Yol
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.1
    • /
    • pp.71-82
    • /
    • 2017
  • It is necessary to conduct a detailed geotechnical investigation on the tunnel section in order to secure the tunnel design and construction stability. It is necessary for the importance of geotechnical investigation that needed for the analysis of distribution and size of fractured fault zone and distribution of groundwater in tunnel. However, if it is difficult to perform the ground survey in the tunnel design due to ground condition of the tunnel section and the limited conditions such as civil complaint, the tunnel design is performed using the result of the minimum survey. Therefore, if weathered fault zone exists in the face the reinforcement method is determined in the design process to secure the stability of the tunnel. The most important factor in reinforcing the tunnel excavation surface is to secure the stability of the tunnel by performing quick reinforcement. In particular, if groundwater leaching occurs on the excavation surface, more rapid reinforcement is needed. In this study, fractured fault zone exists on the tunnel excavation surface and displacement occurs due to weathered fracture zone. When the amount of groundwater leaching rapidly increased under the condition of displacement, the behavior of tunnel displacement was analyzed based on tunnel collapse. In the study, reinforcement measures were taken because the first stage displacement did not converge continuously. After the first reinforcement, the displacement was not converged due to increased groundwater leaching and the second stage displacement occurred and chimney collapse occurred.

A Study on Behaviour of Tunnel Considering the Location of Groundwater Leaching and Fault Fracture Zone under Tunnel Construction (지하수 용출과 단층파쇄 위치에 따른 터널 거동 연구)

  • Son, Yongmin;Kim, Nagyoung;Min, Kyungjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.12
    • /
    • pp.37-43
    • /
    • 2015
  • Ground characteristics is important in tunnel structure utilizing the strength of underground. In the case of the fault fracture zone such as weak soil conditions exists in the tunnel section and groundwater leaching occurs at the same time, it happens to occur to excessive displacement or collapse of tunnel frequently. Fault fracture zone is an important factor that determines the direction of displacement and the collapse of the tunnel under construction. Behavior of fault fracture zone is determined depending on the size and orientation of the surface portion of the tunnel. If the groundwater occurs in the face of tunnel, groundwater causes displacement and collapse. And the collapse characteristics of tunnel is a major factor in determining that the time-dependent behavior. It is difficult to accurately predict groundwater leaching from the fault fracture zone in the numerical analysis method and analyze the interaction behavior of groundwater and fault fracture zone. Therefore numerical analysis method has limitations the analysis of ground water in the ground which the fault fracture zone and groundwater occurs at the same time. It is required to comprehensively predict the behavior of tunnel and case studies of tunnel construction. Thus, the location of fault fracture zone is an important factor that determines the direction of displacement and the collapse of the tunnel. In this study, behavior characteristics of the tunnel according to the location of the fault fracture was analyzed.