• 제목/요약/키워드: tunnel excavation

검색결과 976건 처리시간 0.032초

단층대를 통과하는 터널의 안정성확보에 관한 연구 (A Study of Stability Evaluation for Tunnel at the Fault Zone Crossing)

  • 박인준;최정환;김수일
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.105-112
    • /
    • 2001
  • The purpose of this study is to assess the stability of tunnel for a high speed railway crossing the fault zone. The area where the tunnel crossed the fault zone can be unstable during construction and operation. Geotechnical investigations have been conducted to determine an optimum excavation method by obtaining the material properties around the fault zone and to check the stability of the tunnel. For the numerical analysis, the FLAC, numerical analysis code based on finite difference method, was utilized to analyze the behavior of the fault at three points having typical ground conditions. Based on the results of numerical analysis, the combinations of compaction grouting and LW grouting were determined as suitable methods for pre-excavation Improvement of the ground surrounding the tunnel opening. In conclusion, the stability of the tunnel construction for the high speed railway within the fault zone may be obtained by adopting the optimum excavation method and the reinforcement method. The numerical analysis based on FLAC program contains errors caused by assumptions used in numerical analysis, therefore constant monitoring with respect to the change of ground condition and groundwater is highly recommended to minimize the numerical error and the possibility of damage to tunnel.

  • PDF

A study for design method minimizing wetland's influence by tunnel excavation

  • Choo Seokyean;Koh Sungyil;Lee Jongho;Park Kyungho;Suh Youngho;Jue Kwangsue;Lee Duhwa
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.88-94
    • /
    • 2003
  • In recent, as Republic of Korea has been interested in environmental problem increasingly and became a member of many organizations or institutions related to environmental preservation such as a Ramsar convention, fundamental and completed methods to prevent ground water's drying up and leakage in tunnel excavation are requested. In this paper, we have studied the anticipated problems by tunnel excavation under the wetland and described the effective designed method to maintain the wetland's ecosystem environment. To accomplish this purpose, firstly, we investigated the wetland's ecosystem, ground's hydraulic properties and analysed the foreign similar case for tunnel excavation near the wetland. And by numerical analysis, we analyzed the runoff and infiltration quantity of water and hydraulic behaviour properties by saturation and unsaturation concept in rock mass and wetland. Finally, we established the effective countermeasure to minimize the ecosystem's bad influence by tunnel excavation.

  • PDF

연약 파쇄 지반내 터널의 굴착.보강 설계 및 안정성 분석 (Excavation Support Design and Stability Analysis of Shallow Tunnel in Heavily Fractured Rock Mass)

  • 신희순;신중호;박찬;한공창;최영학;최용기
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.87-92
    • /
    • 2000
  • In excavation of tunnels especially located in shallow depth, it is not rare to meet geological change in excavation progress worse than expected in the initial design stage. This paper present a case study on the re-design of excavation and support system of a shallow tunnel under construction where it meets the unexpected bad geological condition during excavation. The detailed geological investigation shows that the rock mass is heavily weathered and fractured with RMR value less than 20. Considering this geological condition, the design concept is focused on the reinforcement of the ground preceding the excavation of tunnel. Two design patterns, LW-grouting & forepoling with pilot tunnelling method and the steel pipe reinforced grouting method, are suggested. Numerical analysis by FLAC shows that these two patterns give the tunnel and roof ground stable in excavation process while the original design causes severe failure zone around the tunnel and floor heaving. In point of the mechanical stability and the degree of construction, the steel pipe reinforced grouting technique proved to be good for the reinforcement of heavily fractured rock mass in tunnelling. This assessment and design process would be a guide in the construction of tunnels in heavily weathered and fractured rock mass situation.

  • PDF

터널굴착에 따른 인접 구조물 침하 억제효과에 관한 실내모형실험 (Model Tests for the Effect of Settlement Restraint of Adjacent Structure During Tunnel Excavation)

  • 유문오;임종철;고호성;박이근
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.141-148
    • /
    • 2000
  • In this study, differential settlements of adjacent structure and behaviour of ground during tunnel excavation and the effect of micropile installed to preserve differential settlement of structure are measured and analyzed by model test. In the test results, the effective range of reinforcement is suggested.

  • PDF

A quasi-static finite element approach for seismic analysis of tunnels considering tunnel excavation and P-waves

  • Zhao, Wusheng;Zhong, Kun;Chen, Weizhong;Xie, Peiyao
    • Earthquakes and Structures
    • /
    • 제22권6호
    • /
    • pp.549-559
    • /
    • 2022
  • The quasi-static finite element (FE) approaches are widely used for the seismic analysis of tunnels. However, the conventional quasi-static approaches may cause significant deviations when the tunnel excavation process is simulated prior to the quasi-static analysis. In addition, they cannot account for vertical excitations. Therefore, this paper first highlights the limitations of conventional approaches. A hybrid quasi-static FE approach is subsequently proposed and extensively validated for various conditions. The hybrid approach is simple and not time consuming, and it can be used for the preliminary seismic design of tunnels, especially when the tunnel excavation and vertically propagating P-waves are considered.

실트질 지반에 굴착된 NATM 터널의 시공사례 연구 (A Case Study on Construction of a Tunnel Excavated in Silty Ground by the NATM)

  • 박종호;윤효석;박종인;이원규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.139-146
    • /
    • 1999
  • Geological and geotechnical surveys, in general, should precede the excavation to ensure the stability of the tunnel md should be followed up according to the various geological condition during the excavation. However actually the standard support patterns which were decided during the design phases used be insisted for the whole excavation phases in spite of the various geological conditions. When $\bigcirc$$\bigcirc$ tunnel was excavated up to 25m long, the severe displacement was generated in the Portal area of $\bigcirc$$\bigcirc$ tunnel and the tunnel face was pally collapsed. Therefore, this paper present the case study on construction associated with the Umbrella Arch Method used in silty ground by the NATM.

  • PDF

철도터널 굴착에 의한 암반과 지보재의 거동에 관한 연구 (A study on the rock-support behavior due to railway tunnel excavation)

  • 김선곤;박종관;정인철;이승도
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.1077-1082
    • /
    • 2004
  • With increasing the number of tunnel constructions, more reliable analysis methods for tunnel excavation is needed to accomplish technically sound design, and stable and economical constructions. For this purpose, a series of construction procedures, which include excavation and support stages of tunneling, need to be considered. In this study, therefore, rock-support response behavior due to railway tunnel construction has been examined by using analytic methods and numerical calculations. For examining rock-support response behavior, the effects of shotcrete, thickness and time of installation have been considered. Through analytic and numerical calculations, it is shown that support pressure becomes higher with increasing the shotcrete thickness and stiffness, and hence the tunnel deformation tends to be stable. It is also important to notice that there is a significant effect of shotcrete installation time on the tunnel deformation, although no significant change in support pressure is observed.

  • PDF

터널굴착으로 발생한 지반거동에 대한 수치해석적 분석 (Numerical Analysis of Tunnelling-Induced Ground Movements)

  • 손무락;윤종철
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.396-403
    • /
    • 2009
  • Numerical analysis has been performed to estimate maximum settlement and maximum horizontal displacement due to tunnel excavation varying ground condition, tunnel depth and diameter, and construction condition (volume loss at excavation face). The maximum surface settlement from the numerical analysis has been compared with the maximum settlement at tunnel crown considering ground condition, tunnel depth and diameter, and construction condition, and it has been also compared with the maximum horizontal displacement. The results from the numerical analysis have been compared with field measurements to confirm the applicability and validity of the results and by this comparison it is believed that the numerical results in this study can be utilized practically in analyzing the ground movements due to tunnel excavation.

  • PDF

연직 불연속면이 존재하는 얕은 심도의 사질토 지반에서 2-arch 터널 단계별 굴착에 따른 하중전이에 관한 실험적연구 (An experimental study on the load transfer machanism of shallow 2-arch tunnel excavation sequence with vertical discontinuity planes in sandy ground)

  • 오범진;이상덕
    • 한국터널지하공간학회 논문집
    • /
    • 제13권3호
    • /
    • pp.215-231
    • /
    • 2011
  • 본 논문에서는 연직 불연속면을 포함하는 지반에서 얕은 심도 2-arch 터널 굴착에 따른 거동특성을 실험적으로 연구하였으며, 2-arch 터널 굴착에 따른 필러부 하중전이 특성을 관찰하였다. 연직 불연속면의 위치를 변화시키고, 2-arch터널 시공단계별로 모형실험을 수행하였다. 실험결과, 2-arch 터널 굴착에 따른 이완하중이 불연속면이 위치한 곳에 집중되었고, 불연속면에 차단되어 불연속면을 넘어서까지 하중이 전이되지는 않았다. 또한 인접한 터널의 하반을 굴착할 때보다 상반을 굴착할 때에 필러부와 지반변형에 더 큰 영향을 미치는 것으로 나타났다.

CONSTRUCTION MANAGEMENT OF TUNNELLING IN SEVERE GROUNDWATER CONDITION

  • Young Nam Lee;Dae Young Kim
    • 국제학술발표논문집
    • /
    • The 1th International Conference on Construction Engineering and Project Management
    • /
    • pp.655-661
    • /
    • 2005
  • For a hydro power plant project, the headrace tunnel having a finished diameter of 3.3m was constructed in volcanic rocks with well-developed vertical joint and high groundwater table. The intake facility was located 20.3 km upstream of the powerhouse and headrace tunnel of 20 km in length and penstock of 440 m in height connected the intake and the powerhouse. The typical caldera lake, Lake Toba set the geology at the site; the caving of the ground caused tension cracks in the vertical direction to be developed and initial stresses at the ground to be released. High groundwater table(the maximum head of 20 bar) in the area of well-connected vertical joints delayed the progress of tunnel excavation severely due to the excessive inflow of groundwater. The excavation of tunnel was made using open-shield type TBM and mucking cars on the rail. High volume of water inflow raised the water level inside tunnel to 70 cm, 17% of tunnel diameter (3.9 m) and hindered the mucking of spoil under water. To improve the productivity, several adjustments such as modification of TBM and mucking cars and increase in the number of submersible pumps were made for the excavation of severe water inflow zone. Since the ground condition encountered during excavation turned out to be much worse, it was decided to adopt PC segment lining instead of RC lining. Besides, depending on the conditions of the water inflow, rock mass condition and internal water pressure, one of the invert PC segment lining with in-situ RC lining, RC lining and steel lining was applied to meet the site specific condition. With the adoption of PC segment lining, modification of TBM and other improvement, the excavation of the tunnel under severe groundwater condition was successfully completed.

  • PDF