• Title/Summary/Keyword: tunnel cross section

Search Result 209, Processing Time 0.022 seconds

Limit analysis of a shallow subway tunnel with staged construction

  • Yu, Shengbing
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1039-1046
    • /
    • 2018
  • This paper presents a limit analysis of the series of construction stages of shallow tunneling method by investigating their respective safety factors and failure mechanisms. A case study for one particular cross-section of Beijing Subway Line 7 is undertaken, with a focus on the effects of multiple soil layers and construction sequencing of dual tunnels. Results show that using the step-excavation technique can render a higher safety factor for the excavation of a tunnel compared to the entire cross-section being excavated all at once. The failure mechanisms for each different construction stage are discussed and corresponding key locations are suggested to monitor the safety during tunneling. Simultaneous excavation of dual tunnels in the same cross-section should be expressly avoided considering their potential negative interactions. The normal and shear forces as well as bending moment of the primary lining and locking anchor pipe are found to reach their maximum value at Stage 6, before closure of the primary lining. Designing these struts should consider the effects of different construction stages of shallow tunneling method.

Conceptual Study of a Low-Speed Wind Tunnel for Performance Test of Wind Turbine (풍력터빈 성능시험을 위한 저속풍동 개념연구)

  • Kang, Seung-Hee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.4
    • /
    • pp.24-29
    • /
    • 2011
  • Conceptual study of an open-circuit type low-speed wind tunnel for performance test of wind turbine blade and airfoil is conducted. The tunnel is constituted of a settling chamber, a contraction, closed test section, a diffuser, two corners, a cross leg and a fan and motor. For the performance test, the closed test section width of 1.8 m, height of 1.8 m and length of 5.25 m is selected. The contraction ratio is 9 to 1 and maximum speed in the test section is 67 m/sec. Input power in the tunnel is about 238 kW and its energy ratio is 3.6. The wind tunnel designed in present study will be an effective tool in research and development of wind turbine and airfoil.

New Observational Design and Construction Method in Tunnels and Its Application to Very Large Cross Section Tunnel (터널의 신 정보화 설계시공법과 극대단면 터널에의 적용)

  • Hwang Jae-Yun
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.5-14
    • /
    • 2004
  • The observational design and construction method in tunnels is becoming important recently. In many tunnels, enormous cost and time are consumed to cope with the failing or sliding of rock blocks, which could not be predicted because of the complexity of rock discontinuities. It is difficult to estimate the properties of rock masses before the construction. In this paper, a new observational design and construction method in tunnels are proposed, and then applied to the example of the very large cross section tunnel based on actual discontinuity information observed in situ. The items examined in developing a program for the new observational design and construction method are the following ones: generality, precision, high speed, and friendly usability. At the very large cross section tunnel, 7 key blocks were judged to be unstable because they could not be supported by standard supports. Supplementary supports were installed to these 7 key blocks before the excavation. It is possible to detect key blocks all along the tunnel exactly by using the numerical analysis program developed for the new observational design and construction method in the very large cross section tunnel. This computer simulation method with user-friendly interfaces can calculate not only the stability of key blocks but also the design of supplementary supports.

Experimental and numerical study on generation and mitigation of vortex-induced vibration of open-cross-section composite beam

  • Zhou, Zhiyong;Zhan, Qingliang;Ge, Yaojun
    • Wind and Structures
    • /
    • v.23 no.1
    • /
    • pp.45-57
    • /
    • 2016
  • Open-cross-section composite beam (OCB) tends to suffer vortex-induced vibration (VIV) due to its bluff aerodynamic shape. A cable-stayed bridge equipped with typical OCB is taken as an example in this paper to conduct sectional model wind tunnel test. Vortex-induced vibration is observed and maximum vibration amplitudes are obtained. CFD approach is employed to calculate the flow field around original cross sections in service stage and construction stage, as well as sections added with three different countermeasures: splitters, slabs and wind fairings. Results show that flow separate on the upstream edge and cause vortex shedding on original section. Splitters can only smooth the flow field on the upper surface, while slabs cannot smooth flow field on the upper or lower surface too much. Thus, splitters or slabs cannot serve as valid aerodynamic means. Wind tunnel test results show that VIV can only be mitigated when wind fairings are mounted, by which the flow field above and below the bridge deck are accelerated simultaneously.

Simplified analytical solution of tunnel cross section under oblique incident SH wave in layered ground

  • Huifang Li;Mi Zhao;Jingqi Huang;Weizhang Liao;Chao Ma
    • Earthquakes and Structures
    • /
    • v.24 no.1
    • /
    • pp.65-79
    • /
    • 2023
  • A simplified analytical solution for seismic response of tunnel cross section in horizontally layered ground subjected to oblique incidence of SH wave is deduced in this paper. The proposed analytical solution consists of two main steps: free-field response in layered field and tunnel response. The free field responses of the layered ground are obtained by one-dimensional finite element method in time domain. The tunnel lining is treated as a thick-wall cylinder to calculate the tunnel response, which subject to free field stress. The analytical solutions are verified by comparing with the dynamic numerical results of two-dimensional ground-lining interaction analysis under earthquake in some common situations, which have a good agreement. Then, the appropriate range of the proposed analytical solution is analyzed, considering the height of the layered ground, the wavelength and incident angle of SH wave. Finally, by using the analytical solutions, the effects of the ground material, burial depth of the tunnel, and lining thickness and the slippage effect at the ground-lining interface on the seismic response of tunnels are investigated. The proposed solution could serve as a useful tool for seismic analysis and design of tunnels in layered ground.

A Study on the Analysis Method of Safety Cost of Tunnel Accident (터널사고 재난 안전비용 분석 방법에 관한 연구)

  • Baek, Chung-Hyun
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.1
    • /
    • pp.23-30
    • /
    • 2021
  • This paper analyzed a survey of 388 general target samples to analyze the correlation between disaster safety costs and human risk factor analysis and evacuation behavior due to tunnel accidents. Considering the impact of the tunnel accident on disaster safety costs and the correlation between human evacuation and risk factors in the tunnel environment, the system should be reorganized to reflect the tunnel's basic plan, tunnel cross-section, tunnel installation.

The effect of air-shafts on reducing the pressure fluctuations in the tunnel with small cross sectional area on conventional line (소단면 기존 철도터널에서 통풍공 개수에 따른 터널내 풍압변동 저감효과에 대한 연구)

  • 김동현;강부병;이재환;신민호;이성욱
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.382-389
    • /
    • 2000
  • The purpose of present study is to investigate for reducing pressure fluctuations in tile case of installing tile air-shafts on the side wall of the tunnel with small cross-sectional area on conventional line. Experiments were performed with a 1/61-scale moving model rig for the tunnel of 0.764km length in the condition of tunnel cross-section area of 28 ㎡ According to the results, the maximum pressure fluctuation is reduced by 45% for 19 air-shafts. This results have the speed-up effects of about 33.4km/h for the train running in tunnel.

  • PDF

A Study on site selection criteria and discharge capability evaluation for the multi-purpose use of a double-deck tunnel in a great depth (대심도 복층터널의 다목적 활용을 위한 입지선정 및 통수성능 평가)

  • Moon, Hoon-Ki;Kil, Ki- Oh;Song, In-Cheol;Lee, Hye-Yoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.3
    • /
    • pp.283-290
    • /
    • 2016
  • Recent, the construction of the multi-purpose double-deck tunnel is required to solve the flood protection and congested area at urban city. The multi-purpose double-deck tunnel is desperately needed for the introduction of efficient utilization of underground space in addition to the main feature of road capabilities. A basic review was performed for site selection to consider the control capability and features of road tunnel at the same time, and the processable flow in accordance with tunnels cross section of double deck tunnel. Site Selection Criteria for multi-purpose use of the double-deck tunnel has been proposed through the site selection criteria by use of the tunnels review. Also the estimation processable flow was performed to review the versatility of double-deck tunnel due to design of tunnel cross-section. Site Selection of double-deck tunnel from this study can be seen the need for a complex consideration through a variety of analyzes.

The study for the aerodynamic effects of air-shafts in the railway tunnel (철도터널 통풍공의 공기역학적 성능에 대한 연구)

  • Kim, Dong-Hyeon;Kang, Bu-Byoung;Shin, Min-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.341-348
    • /
    • 2001
  • The purpose of present study is to investigate for reducing pressure fluctuations in the case of installing the air-shafts on the side wall of the tunnel with small cross-sectional area on conventional line. Experiments were performed with a 1/61-scale moving model rig for the tunnel of 0.764 km length in the condition of tunnel cross-section area of $28 m^2$. According to the results, the maximum pressure fluctuation is reduced by 45 % for 19 air-shafts. This results have the speed-up effects of about 33.4 km/h for the train running in tunnel.

  • PDF

Conceptual Design Study of a Low-Speed Wind Tunnel for Performance Test of Wind Turbine (풍력터빈 성능시험을 위한 풍동 개념연구)

  • Kang, Seung-Hee;Choi, Woo-Ram;Kim, Hae-Jeong;Kim, Yong-Hwi
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.431-434
    • /
    • 2009
  • Conceptual study of an open-circuit type low-speed wind tunnel for test of wind turbine blade is conducted. The tunnel is constituted of a settling chamber, a contraction, closed and open test sections, a diffuser, two corners, a cross leg and a fan and motor. For the performance test, the closed test section width of 1.8 m, height of 1.8 m and length of 5.25 m is selected. The open test section with dimension width of 1.8 m, height of 1.8 m and length of 4.14 m is adopted for aeroacoustic test. The contraction ratio is 9 to 1 and maximum speed in the closed test section is 67 m/sec. Input power in the tunnel is about 238 kW and its energy ratio is 3.6. The wind tunnel designed in present study will be an effective tool in research and development of wind turbine.

  • PDF