• Title/Summary/Keyword: tunnel barrier engineering

Search Result 124, Processing Time 0.032 seconds

차세대 비 휘발성 메모리 적용을 위한 Staggered tunnel barrier ($Si_3N_4$/HfAlO) 에 대한 전기적 특성 평가

  • Yu, Hui-Uk;Park, Gun-Ho;Nam, Gi-Hyeon;Jeong, Hong-Bae;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.219-219
    • /
    • 2010
  • 기존의 플로팅 타입의 메모리는 소자의 소형화에 따른 인접 셀 간의 커플링 현상과 전계에 따른 누설전류의 증가 등과 같은 문제가 발생한다. 이에 대한 해결책으로서 전하 저장 층을 폴리실리콘에서 유전체를 사용하는 SONOS 형태의 메모리와 NFGM (Nano-Floating Gate Memory)연구가 되고 있다. 그러나 높은 구동 전압, 느린 쓰기/지우기 속도 그리고 10년의 전하보존에 대한 리텐션 특성을 만족을 시키지 못하는 문제가 있다. 이러한 문제를 해결 하고자 터널베리어를 엔지니어링 하는 TBM (Tunnel Barrier Engineering Memory) 기술에 대한 연구가 활발히 진행 중이다. TBM 기술은 터널 층을 매우 얇은 다층의 유전체를 사용하여 전계에 따른 터널베리어의 민감도를 증가시킴으로써 빠른 쓰기/지우기 동작이 가능하며, 10년의 전하 보존 특성을 만족 시킬 수 있는 차세대 비휘발성 메모리 기술이다. 또한 고유전율 물질을 터널층으로 이용하면 메모리 특성을 향상 시킬 수가 있다. 일반적으로 TBM 기술에는 VARIOT 구조와 CRESTED 구조로 나눠지는데 본 연구에서는 두 구조의 장점을 가지는 Staggered tunnel barrier 구조를 $Si_3N_4$와 HfAlO을 이용하여 디자인 하였다. 이때 HfO2와 Al2O3의 조성비는 3:1의 조성을 갖는다. $Si_3N_4$와 HfAlO을 각각 3 nm로 적층하여 리세스(Recess) 구조의 트랜지스터를 제작하여 차세대 비휘발성 메모리로써의 가능성을 알아보았다.

  • PDF

Magnetoresistance and Structural Properties of the Magnetic Tunnel Junction with Ternary Oxide Barrier (삼원계 산화 절연층을 가진 자기터널접합의 자기·구조적 특성에 관한 연구)

  • Park, Sung-Min;Lee, Seong-Rae
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.4
    • /
    • pp.231-235
    • /
    • 2005
  • We studied the microstructural evolution of ZrTM-Al (TM=Nb and Ti) alloy films, MR and electrical properties of the MTJ with $ZrTM-AlO_x$ barrier as a function of Zr/TM ratio. We observed that the ternary-oxide barrier reduced the TMR ratio due mainly to the structural defects such as the surface roughness. The change in TMR ratio and $V_h$ with Zr/TM ratio exactly corresponds to the systematic changes in the microstructural variation. Although the MTJ with ternary oxide reduced the TMR and the electrical stabilities, the junction resistances decreased as the Ti and Nb concentration increased due to the band-gap reduction caused by the formation of extra bands

Characteristics of Magnetic Tunnel Junctions Incorporating Nano-Oxide Layers (나노 산화층을 사용한 자기터널접합의 특성)

  • Chu, In-Chang;Chun, Byong-Sun;Song, Min-Sung;Lee, Seong-Rae;Kim, Young-Keun
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.2
    • /
    • pp.136-139
    • /
    • 2006
  • The tunneling magnetoresistance (TMR) ratios of magnetic tunnel junctions (MTJs), in general, decrease abruptly above 250$^{\circ}C$ due to Mn interdiffusion from an antiferromagnet IrMn layer to a ferromagnetic CoFe and/or a tunnel barrier. To improve thermal stability, we prepared MTJs with nano-oxide layers. Using a MTJ structure consisting of underlayer CoNbZr 4/bufferlayer CoFe 10/antiferromaget IrMn 7.5/pinned layer CoFe 3/tunnel barrier AlO/freelayer CoFe 3/capping CoNbZr 2 (nm), we placed a nano-oxide layer (NOL) into the underlayer or bufferlayer. Then, the thermal, structural and magneto-electric properties were measured. The TMR ratio, surface flatness, and thermal stability of the MTJs with NOLs were promoted.

Reliability of underground concrete barriers against normal missile impact

  • Siddiqui, N.A.;Khan, F.H.;Umar, A.
    • Computers and Concrete
    • /
    • v.6 no.1
    • /
    • pp.79-93
    • /
    • 2009
  • In the present paper, a methodology has been presented for the reliability assessment of concrete barriers that lie at a certain depth in the soil, and a missile (a rigid projectile) impacts the top of the soil cover normally, and subsequently after penetrating the soil cover completely it hits the barrier with certain striking velocity. For this purpose, using expressions available in the literature, striking velocity of missile at any depth of soil has been derived and then expressions for the depths of penetration in crater and tunnel region of concrete barrier have been deduced. These depths of penetration have been employed for the derivation of limit state functions. Using the derived limit state functions reliability assessment of underground concrete barrier has then been carried out through First Order Reliability Method (FORM). To study the influence of various random variables on barrier reliability, sensitivity analysis has also been carried out. In addition, a number of parametric studies is conducted to obtain the results of practical interest.

Pantograph-catenary Dynamic Interaction for a Overhead Line Supported by Noise Barrier

  • Belloli, Marco;Collina, Andrea;Pizzigoni, Bruno
    • International Journal of Railway
    • /
    • v.5 no.2
    • /
    • pp.55-64
    • /
    • 2012
  • Subject of the paper is a particular configuration of overhead line, in which noise barrier structure is used as supports of the catenary instead of standard poles. This configuration is foreseen in case the noise barrier position is in conflict with the poles location. If the catenary is supported by the noise barrier, the motion that the latter undergo due to wave pressure associated to train transit is transmitted to the overhead line, so that potentially it influences the interaction between the catenary itself and the pantograph of the passing train. The paper focuses on the influence of such peculiar configuration on the quality of the current collection of high speed pantograph, for single and double current collection. The study has been carried out first with an experimental investigation on the pressure distribution on noise barrier, both in wind tunnel and with in-field tests. Subsequently a numerical analysis of the dynamics of the barrier subjected to the wave pressure due to train transit has been carried out, and the output of such analysis has been used as input data for the simulation of the pantograph-dynamic interaction at different speeds and with front or rear pantograph in operation. Consideration of structural modifications was then highlighted, in order to reduce the influence on the contact loss percentage.

The motion rule of sand particles under control of the sand transportation engineering

  • Xin, Lin-gui;Cheng, Jian-jun;Chen, Bo-yu;Wang, Rui
    • Wind and Structures
    • /
    • v.27 no.4
    • /
    • pp.213-221
    • /
    • 2018
  • In the desert and Gobi regions with strong wind and large sediment discharge, sand transporting engineering is more effective than sand blocking and sand fixing measures in sand prevention. This study uses the discrete phase model of 3D numerical simulation to study the motion trail, motion state and distribution rule of sand particles with different grain diameters when the included angle between the main shaft of the feather-row lateral transportation sand barrier and the wind direction changes, and conducts a comparison in combination with the wind tunnel test and the flow field rule of common sand barrier. According to the comparison, when wind-sand incoming flow passes through a feather-row sand barrier, sand particles slow down and deposit within the deceleration area under the resistance of the feather-row sand barrier, move along the transportation area formed by the transportation force, and accumulate as a ridge at the tail of the engineering. With increasing wind speed, the eolian erosion of the sand particles to the ground and the feather-row sand barrier is enhanced, and the sand transporting quantity and throw-over quantity of the feather-row sand barrier are both increased. When sand particles with different grain diameters bypass the feather-row sand barrier, the particle size of the infiltrating sands will increase with the included angle between the main shaft of the feather-row sand barrier and the wind direction. The obtained result demonstrates that, at a constant wind speed, the flow field formed is most suitable for the lateral transportation of the wind-drift flow when the included angle between the main shaft of the feather-row sand barrier lateral transportation engineering and the wind speed is less than or equal to $30^{\circ}$.

Formation of $Al_O_3$Barrier in Magnetic Junctions on Different Substrates by $O_2$Plasma Etching

  • Wang, Zhen-Jun;Jeong, Won-Cheol;Yoon, Yeo-Geon;Jeong66, Chang-Wook;Joo, Seung-Ki
    • Journal of Magnetics
    • /
    • v.6 no.3
    • /
    • pp.90-93
    • /
    • 2001
  • Co/$Al_O_3$/NiFe and CO/$Al_O_3$/Co tunnel junctions were fabricated by a radio frequency magnetron sputtering at room temperature with hard mask on glass and $4^{\circ}$ tilt cut Si (111) substrates. The barrier layer was formed through two steps. After the Al layer was deposited, it was oxidized in the chamber of a reactive ion etching system (RIE) with $O_2$plasma at various conditions. The dependence of the TMR value and junction resistance on the thickness of Al layer (before oxidation) and oxidation parameters were investigated. Magnetoresistance value of 7% at room temperature was obtained by optimizing the Al layer thickness and oxidation conditions. Circular shape junctions on $4^{\circ}$tilt cut Si (111) substrate showed 4% magnetoresistance. Photovoltaic energy conversion effect was observed with the cross-strip geometry junctions on Si substrate.

  • PDF