• Title/Summary/Keyword: tunnel

Search Result 8,734, Processing Time 0.038 seconds

Analysis of Characteristics of Horizontal Response Spectrum of Velocity Ground Motions from 5 Macro Earthquakes (5개 중규모 지진의 속도 관측자료를 이용한 수평 응답스펙트럼 특성 분석)

  • Kim, Jun-Kyoung
    • Tunnel and Underground Space
    • /
    • v.21 no.6
    • /
    • pp.471-479
    • /
    • 2011
  • The velocity horizontal response spectra using the observed ground motions from the recent 5 macro earthquakes, equal to or larger than 4.8 in magnitude, around Korean Peninsula were analysed and then were compared to the acceleration horizontal response spectra, seismic design response spectra (Reg Guide 1.60), applied to the domestic nuclear power plants, and finally the Korean Standard Design Response Spectrum for general structures and buildings. 102 velocity horizontal ground motions, including NS and EW components, were used for velocity horizontal response spectra and then normalized with respect to the peak velocity value of each ground motion. First, the results showed that velocity horizontal response spectra have larger values at the range of medium natural period, but acceleration horizontal response spectra have larger values at the range of short natural periods. Secondly, the results also showed that velocity horizontal response spectra exceed Reg. Guide 1.60 for longer natural periods bands less than 6-7 Hz. Finally, the results were also compared to the Korean Standard Response Spectrum for the 3 different soil types(SC, SD, and SE soil type) and showed that velocity horizontal response spectra revealed much higher values for the frequency bands below 1.5(SC), 2.0(SD), and 3.0(SE) seconds, respectively, than the Korean Standard Response Spectrum. The results suggest that the fact that acceleration, velocity, and displacement horizontal response spectra have larger values at the range of short, medium, and long natural periods, respectively, can be applied consistently to those form domestic ground motion, especially, the velocity ground motion. Information on response spectrum at such medium range periods can be very important since the domestic design of buildings and structures emphasizes recently medium and long natural periods than short one due to increased super high-rise buildings.

Evaluation of Stress Thresholds in Crack Development and Corrected Fracture Toughness of KURT Granite under Dry and Saturated Conditions (포화유무에 따른 KURT 화강암의 균열손상 기준 및 수정 파괴인성 측정(Level II Method))

  • Kim, Jin-Seop;Hong, Chang-Ho;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.3
    • /
    • pp.256-269
    • /
    • 2020
  • The objective of this study is to evaluate the stress thresholds in crack development and the corrected fracture toughness of KURT granite under dry and saturated conditions. The stress thresholds were identified by calculation of inelastic volumetric strain from an uniaxial compression test. The corrected fracture toughness was estimated by using the Level II method (Chevron Bend specimen), suggested by ISRM (1988), in which non-linear behaviors of rock was taken into account. Average crack initiation stress(σci) and crack damage stress(σcd) under a dry condition were 91.1 MPa and 128.7 MPa. While, average crack initiation stress(σci) and crack damage stress(σcd) under a saturated condition were 58.2 MPa and 68.2 MPa. The crack initiation stress and crack damage stress of saturated ones decreased 36% and 47% respectively compared to those of dry specimens. A decrease in crack damage stress is relatively larger than that of crack initiation stress under a saturated condition. This indicates that the unstable crack growth can be more easily generated because of the saturation effect of water compared to the dry condition. The average corrected fracture toughness of KURT granite was 0.811 MPa·m0.5. While, the fracture toughness of saturated KURT granite(KCB) was 0.620 MPa·m0.5. The corrected fracture toughness of rock in saturated condition decreases by 23.5% compared to that in dry condition. It is found that the resistance to crack propagation decreases under the saturated geological condition.

Numerical Modelling for the Dilation Flow of Gas in a Bentonite Buffer Material: DECOVALEX-2019 Task A (벤토나이트 완충재에서의 기체 팽창 흐름 수치 모델링: DECOVALEX-2019 Task A)

  • Lee, Jaewon;Lee, Changsoo;Kim, Geon Young
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.382-393
    • /
    • 2020
  • The engineered barrier system of high-level radioactive waste disposal must maintain its performance in the long term, because it must play a role in slowing the rate of leakage to the surrounding rock mass even if a radionuclide leak occurs from the canister. In particular, it is very important to clarify gas dilation flow phenomenon clearly, that occurs only in a medium containing a large amount of clay material such as a bentonite buffer, which can affect the long-term performance of the bentonite buffer. Accordingly, DECOVALEX-2019 Task A was conducted to identify the hydraulic-mechanical mechanism for the dilation flow, and to develop and verify a new numerical analysis technique for quantitative evaluation of gas migration phenomena. In this study, based on the conventional two-phase flow and mechanical behavior with effective stresses in the porous medium, the hydraulic-mechanical model was developed considering the concept of damage to simulate the formation of micro-cracks and expansion of the medium and the corresponding change in the hydraulic properties. Model verification and validation were conducted through comparison with the results of 1D and 3D gas injection tests. As a result of the numerical analysis, it was possible to model the sudden increase in pore water pressure, stress, gas inflow and outflow rate due to the dilation flow induced by gas pressure, however, the influence of the hydraulic-mechanical interaction was underestimated. Nevertheless, this study can provide a preliminary model for the dilation flow and a basis for developing an advanced model. It is believed that it can be used not only for analyzing data from laboratory and field tests, but also for long-term performance evaluation of the high-level radioactive waste disposal system.

Modelling of Fault Deformation Induced by Fluid Injection using Hydro-Mechanical Coupled 3D Particle Flow Code: DECOVALEX-2019 Task B (수리역학적연계 3차원 입자유동코드를 사용한 유체주입에 의한 단층변형 모델링: DECOVALEX-2019 Task B)

  • Yoon, Jeoung Seok;Zhou, Jian
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.320-334
    • /
    • 2020
  • This study presents an application of hydro-mechanical coupled Particle Flow Code 3D (PFC3D) to simulation of fluid injection induced fault slip experiment conducted in Mont Terri Switzerland as a part of a task in an international research project DECOVALEX-2019. We also aimed as identifying the current limitations of the modelling method and issues for further development. A fluid flow algorithm was developed and implemented in a 3D pore-pipe network model in a 3D bonded particle assembly using PFC3D v5, and was applied to Mont Terri Step 2 minor fault activation experiment. The simulated results showed that the injected fluid migrates through the permeable fault zone and induces fault deformation, demonstrating a full hydro-mechanical coupled behavior. The simulated results were, however, partially matching with the field measurement. The simulated pressure build-up at the monitoring location showed linear and progressive increase, whereas the field measurement showed an abrupt increase associated with the fault slip We conclude that such difference between the modelling and the field test is due to the structure of the fault in the model which was represented as a combination of damage zone and core fractures. The modelled fault is likely larger in size than the real fault in Mont Terri site. Therefore, the modelled fault allows several path ways of fluid flow from the injection location to the pressure monitoring location, leading to smooth pressure build-up at the monitoring location while the injection pressure increases, and an early start of pressure decay even before the injection pressure reaches the maximum. We also conclude that the clay filling in the real fault could have acted as a fluid barrier which may have resulted in formation of fluid over-pressurization locally in the fault. Unlike the pressure result, the simulated fault deformations were matching with the field measurements. A better way of modelling a heterogeneous clay-filled fault structure with a narrow zone should be studied further to improve the applicability of the modelling method to fluid injection induced fault activation.

Growth, Photosynthesis and Chlorophyll Fluorescence of Chinese Cabbage in Response to High Temperature (고온 스트레스에 대한 배추의 생장과 광합성 및 엽록소형광 반응)

  • Oh, Soonja;Moon, Kyung Hwan;Son, In-Chang;Song, Eun Young;Moon, Young Eel;Koh, Seok Chan
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.318-329
    • /
    • 2014
  • In order to gain insight into the physiological responses of plants to high temperature stress, the effects of temperature on Chinese cabbage (Brassica campestris subsp. napus var. pekinensis cv. Detong) were investigated through analyses of photosynthesis and chlorophyll fluorescence under 3 different temperatures in the temperature gradient tunnel. Growth (leaf length and number of leaves) during the rosette stage was greater at ambient $+4^{\circ}C$ and ambient $+7^{\circ}C$ temperatures than at ambient temperature. Photosynthetic $CO_2$ fixation rates of Chinese cabbage grown under the different temperatures did not differ significantly. However, dark respiration rate was significantly higher in the cabbage that developed under ambient temperature relative to elevated temperature. Furthermore, elevated growth temperature increased transpiration rate and stomatal conductance resulting in an overall decrease of water use efficiency. The chlorophyll a fluorescence transient was also considerably affected by high temperature stress; the fluorescence yield $F_J$, $F_I$, and $F_P$ decreased considerably at ambient $+4^{\circ}C$ and ambient $+7^{\circ}C$ temperatures, with induction of $F_K$ and decrease of $F_V/F_O$. The values of RC/CS, ABS/CS, TRo/CS, and ETo/CS decreased considerably, while DIo/CS increased with increased growth temperature. The symptoms of soft-rot disease were observed in the inner part of the cabbage heads after 7, 9, and/or 10 weeks of cultivation at ambient $+4^{\circ}C$ and ambient $+7^{\circ}C$ temperatures, but not in the cabbage heads growing at ambient temperature. These results show that Chinese cabbage could be negatively affected by high temperature under a future climate change scenario. Therefore, to maintain the high productivity and quality of Chinese cabbage, it may be necessary to develop new high temperature tolerant cultivars or to markedly improve cropping systems. In addition, it would be possible to use the non-invasive fluorescence parameters $F_O$, $F_V/F_M$, and $F_V/F_O$, as well as $F_K$, $M_O$, $S_M$, RC/CS, ETo/CS, $PI_{abs}$, and $SFI_{abs}$ (which were selected in this study), to quantitatively determine the physiological status of plants in response to high temperature stresses.

Effect of Root Zone Warming by Hot Water on Rhizosphere Environment and Growth of Greenhouse- grown Oriental Melon (Cucumis melo L.) (온수 지중가온이 참외의 근권환경 및 생육에 미치는 영향)

  • 신용습;이우승;도한우;배수곤;최성국
    • Journal of Bio-Environment Control
    • /
    • v.6 no.2
    • /
    • pp.103-109
    • /
    • 1997
  • This experiment was conducted to investigate the effects of root zone warming on rhizosphere temperature of Oriental melon (Cucumis melo L. var. Makuwa) in winter season. Root zone was warmed by hot water flowing through pipe set at 35cm depth from the ridge. Treatments of minimum soil temperature at 20cm depth were 17, 21, $25^{\circ}C$, and non-warmed from Jan. 18 to Apr. 18. The results are summarized as follows. 1. The cumulative soil temperature for 1 month after planting oriental melon was 441, 558, 648, and 735$^{\circ}C$ at control, 17, 21, and $25^{\circ}C$ plot, respectively. 2. As soil temperature was higher, air temperature in tunnel was higher. The lowest temperature in control plot at night was 9.5$^{\circ}C$, 11.$0^{\circ}C$ in 17$^{\circ}C$ plot, 13.5$^{\circ}C$ in 21$^{\circ}C$ plot, and 16.5$^{\circ}C$ in $25^{\circ}C$ plot, respectively. 3. The xylem exudate amount of control plot for 24 hours just after basal stem abscission was 8.1$m\ell$. It was 1.2 times higher in 17$^{\circ}C$ plot, 1.3 times higher in 21 $^{\circ}C$ plot, and 4.8 times higher in $25^{\circ}C$ plot than in control plot at 30 days after planting. The xylem exudate amount at 67 days after planting of control plot was 10.4$m\ell$, those of 17, 21, $25^{\circ}C$ plots were 1.1, 3.2, and 3.3 times as compared to control plot. 4, Early growth in leaf length, stem diameter, leaf number and leaf area for 30 days after planting were better in higher temperature plots than in control plot. Particularly, the increase of leaf area was striking in higher temperature plots. Leaf area of control plot was 279.5$\textrm{cm}^2$ for 30 days after planting, 153.4% in 17$^{\circ}C$ plot, 745.6% in 21$^{\circ}C$ plot and 879.4% in $25^{\circ}C$ plot were increased as compared to in control plot.

  • PDF

Detection of IgY Specific to Salmonella enteritidris and S. typhimurium in the Yolk of Commercial Brand Eggs using ELISA (ELISA 방법으로 계란의 난황에 존재하는 Salmonella enteritidis와 S. typhimurium에 대한 IgY 측정)

  • 이승배
    • Food Science of Animal Resources
    • /
    • v.23 no.2
    • /
    • pp.161-167
    • /
    • 2003
  • Identification of salmonellosis-infected commercial poultry flocks has become a pivotal component of efforts to reduce incidence of egg-associated transmission of S. enteritidis and S. typhimurium to humans. As a basic study for sanitary control of S. enteritidis and S. typhimurium, main food-borne pathogenic bacteria in eggs produced by domestic hens, commercial egg samples were tested for specific antibodies to whole cells of S. enteritidis and S. typhimurium and outer membrane protein(OMP) of S. typhimurium by ELISA to detect infection of S. enteritidis and S. typhimurium in various groups of hens. When the antibody titers of yolks from three commercial brand eggs were tested after diluting in the ratio from 1:100 to 1:1,600 with double dilution method, ELISA values of the specific antibodies could be shown as differences in dilution patterns by comparing with negative control egg. When the antibody titers of the yolks from two commercial brand eggs were tested after diluting in the ratio of 1:200 and 1:1,000, ELISA values of specific antibodies were different among same brand eggs. When the antibody titers of yolks from five eggs sampled randomly from twenty one commercial brand eggs were tested after diluting in the ratio of 1:1,000, ELISA value of the specific antibodies were shown generally high. ELISA values of 28.5, 30, and 28.5% of yolks from 21 brand eggs were shown low and similar to negative control egg in antibody titers to whole cells of S. enteritidis and S. typhimurium and OMP of S. typhimurium, respectively. The results demonstrated that ELISA test of egg yolk antibody could provide a highly sensitive indicator to detect contamination of S. typhimurium and S. enteritidis in poultry, and could be used effectively to reduce incidence of S. typhimurium and S. enteritidis infection in poultry.

A Study on the Distinct Element Modelling of Jointed Rock Masses Considering Geometrical and Mechanical Properties of Joints (절리의 기하학적 특성과 역학적 특성을 고려한 절리암반의 개별요소모델링에 관한 연구)

  • Jang, Seok-Bu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1998.05a
    • /
    • pp.35-81
    • /
    • 1998
  • Distinct Element Method(DEM) has a great advantage to model the discontinuous behaviour of jointed rock masses such as rotation, sliding, and separation of rock blocks. Geometrical data of joints by a field monitoring is not enough to model the jointed rock mass though the results of DE analysis for the jointed rock mass is most sensitive to the distributional properties of joints. Also, it is important to use a properly joint law in evaluating the stability of a jointed rock mass because the joint is considered as the contact between blocks in DEM. In this study, a stochastic modelling technique is developed and the dilatant rock joint is numerically modelled in order to consider th geometrical and mechanical properties of joints in DE analysis. The stochastic modelling technique provides a assemblage of rock blocks by reproducing the joint distribution from insufficient joint data. Numerical Modelling of joint dilatancy in a edge-edge contact of DEM enable to consider not only mechanical properties but also various boundary conditions of joint. Preprocess Procedure for a stochastic DE model is composed of a statistical process of raw data of joints, a joint generation, and a block boundary generation. This stochastic DE model is used to analyze the effect of deviations of geometrical joint parameters on .the behaviour of jointed rock masses. This modelling method may be one tool for the consistency of DE analysis because it keeps the objectivity of the numerical model. In the joint constitutive law with a dilatancy, the normal and shear behaviour of a joint are fully coupled due to dilatation. It is easy to quantify the input Parameters used in the joint law from laboratory tests. The boundary effect on the behaviour of a joint is verified from shear tests under CNL and CNS using the numerical model of a single joint. The numerical model developed is applied to jointed rock masses to evaluate the effect of joint dilation on tunnel stability.

  • PDF

Effects of Simulated Acid Rain on Nutrient Contents of Pinus densiflora S. et Z. and Forsythia koreana Nak. Seedlings (인공산성우(人工酸性雨)가 소나무 및 개나리묘(苗)의 식물체내(植物體內) 함유성분(含有成分)에 미치는 영향(影響))

  • Cheong, Yong Moon
    • Journal of Korean Society of Forest Science
    • /
    • v.77 no.3
    • /
    • pp.259-268
    • /
    • 1988
  • For the purpose of examining the effects of simulated acid rain on nutrient contents of plant tissues in Pintos densiflora seedlings and Forsythia koreana rooted cuttings, the experimental design of randomized block arrangement with three replications was implemented in the experimental field of Yesan National Agricultural Junior College. One-year-old Pinus densiflora seedlings and Forsythia koreana cuttings were planted in the pots filled the mixed soils(nursery soil : forest soil of siliceous sandy loam=1 : 1 v/v) in the early spring of 1986. The regime of artificial acid rain, in terms of spray frequency per month and spray amount at single treatment per plot, was simulated on the basis of climatological data averaged from 30 years records. Simulated acid rain(pH 2.0, pH 4.0, and pH 5.5 as control) containing sulfuric and nutric acid in the ratio of 3 : 2(chemical equivalant basis) diluted with ground water were treated on the experimental plants under condition of cutting off the natural precipitation with vinyl tunnel, during the growing season(May 1 to August 31) in 1986. The results obtained in this study were as follow : (1) As for the nitrogen contents in plant tissues, P. densiflora increased significantly in one-year-old stembranch and root tissues, and F. koreana increased significantly in leaf and root tissues, as the pH levels of acid rain decreased. (2) The available phosphate contents in root tissues of P. densiflora, and in leaf and root tissues of F. koreana were significantly decreased, as the pH levels of acid rain decreased. (3) $K_2O$, CaO and MgO contents in plant tissues were significantly decreased in the both species as the pH levels decreased. And the effects of acid rain on F. koreana were higher than those of P. densiflora. (4) Sulfur contents of plant tissues in the both species were increased at pH 2.0 treatment. There were significant differences among three acid rain treatments in leaf and root tissues of P. densiflora, and in all parts of F. koreana. (5) In the effects of simulated acid rain on the both species and the tested soils, in general, F. koreana revealed higher sensitiveness than P. densiflora, and the lower pH levels of simulated acid rain were treated, the more sharp reaction was showed.

  • PDF

Characteristics of Aerodynamic Damping on Helical-Shaped Super Tall Building (나선형 형상의 초고층건물의 공력감쇠의 특성)

  • Kim, Wonsul;Yi, Jin-Hak;Tamura, Yukio
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.9-17
    • /
    • 2017
  • Characteristics of aerodynamic damping ratios of a helical $180^{\circ}$ model which shows better aerodynamic behavior in both along-wind and across-wind responses on a super tall building was investigated by an aeroelastic model test. The aerodynamic damping ratio was evaluated from the wind-induced responses of the model by using Random Decrement (RD) technique. Further, various triggering levels in evaluation of aerodynamic damping ratios using RD technique were also examined. As a result, it was found that when at least 2000 segments were used for evaluating aerodynamic damping ratio for ensemble averaging, the aerodynamic damping ratio can be obtained more consistently with lower irregular fluctuations. This is good agreement with those of previous studies. Another notable observation was that for square and helical $180^{\circ}$ models, the aerodynamic damping ratios in along-wind direction showed similar linear trends with reduced wind speeds regarding of building shapes. On the other hand, for the helical $180^{\circ}$ model, the aerodynamic damping ratio in across-wind direction showed quite different trends with those of the square model. In addition, the aerodynamic damping ratios of the helical $180^{\circ}$ model showed very similar trends with respect to the change of wind direction, and showed gradually increasing trends having small fluctuations with reduced wind speeds. Another observation was that in definition of triggering levels in RD technique on aerodynamic damping ratios, it may be possible to adopt the triggering levels of "standard deviation" or "${\sqrt{2}}$ times of the standard deviation" of the response time history if RD functions have a large number of triggering points. Further, these triggering levels may result in similar values and distributions with reduced wind speeds and either may be acceptable.