• Title/Summary/Keyword: tuning stub

Search Result 34, Processing Time 0.023 seconds

A Design for a Modified Circular Slot Antenna with a Fork-like Tuning Stub for UWB Operations

  • Yoon, Joong-Han
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.2
    • /
    • pp.65-70
    • /
    • 2016
  • This paper proposes and experimentally tests a modified circular slot antenna fed by a fork-like tuning stub for ultra-wideband (UWB) operation. The proposed antenna consists of a modified circular slot model and fork-like tuning stub. The proposed antenna is printed on a 34.0 mm × 30.0 mm FR4 substrate with thickness of 1.0 mm and relative permittivity of 4.4. The effect of various parameters of the circular slot and fork-like tuning stub is investigated for UWB operation. The modified circular slot and fork-like tuning stub are fabricated on the substrate to achieve wideband operation and good impedance matching. Experimental results demonstrated that the measured return loss exhibits an acceptable agreement with the simulated return loss and satisfies the -10 dB impedance bandwidth requirement while simultaneously covering the UWB bands. In addition, the proposed antenna shows good radiation characteristics and gains in the UWB bands.

Design of the Electromagnetically Coupled Broadband Microstrip Antennas with Radial Tuning Stub (방사형 동조 스터브를 갖는 전자기결합 광대역 마이크로스트립 안테나의 설계)

  • 김정렬;윤현보
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.1
    • /
    • pp.26-35
    • /
    • 1996
  • In this paper, characteristics of the electromagnetically coupled broadband microstrip antennas are analyzed by the Finite Difference Time Domain (FDTD) method, and antenna para- meters are optimized to get maximum bnadwidth. By using short radial tuning stub in microstrip feedline, electromagnetically coupled microstrip antenna shows broadband ($\simeq$13%) characteristics, and the characteristics are varied as a function of radius, radial angle, and position of the radial tuning stub. Operating frequency, return loss, VSWR and input impedance are calculated by Fourier transforming the time domain results. After optimization of the parameters, maximum bandwidth of the radial stub tuning microstrip antenna is about 15% and the ripple char- acteristic of the VSWR is better than the rectangular tuning stub microstrip antenna.

  • PDF

Design of a Polygon Slot Antenna with a Polygon Tuning Stub for Ultra-Wideband Applications

  • Lee, Ju Ho;Choi, Young Gyu;Yoon, Joong Han
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • In this study, we develop and experimentally evaluate an ultra-wideband (UWB) slot antenna with a polygon tuning stub. The proposed antenna consists of a polygon slot with a $50-{\Omega}$ feed line. The effects of various parameters of the polygon-shaped slot and the polygon tuning stub on UWB applications are investigated. The optimum parameters were obtained using the Ansys HFSS software. The results of the studies on the surface current distributions of the operating frequency bands were discussed. The proposed antenna is fabricated on an inexpensive FR-4 substrate with the overall dimensions of $28.0mm{\times}30.0mm$. The measured results confirm that the proposed antenna covers frequencies from 2.58 GHz to 13.27 GHz, which is the UWB frequency range. Further, the proposed UWB antenna also exhibited that omni-directionality in the H-plane gain varied from 1.185 to 7.246 dBi. The good antenna characteristics of the proposed antenna make it suitable for UWB system applications.

Development of Liquid Stub and Phase Shifter

  • Wang, Son-Jong;Yoon, Jae-Sung;Hong, Bong-Guen
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.201-208
    • /
    • 2001
  • The high power RF transmission line components are required for transmitting MW level RF power continuously in RF heating and current drive system which heat the plasma and produce plasma current in fusion reactor The liquid stub and phase shifter is proposed as the superior to the conventional stub and phase shifter. Experimental results show that they are reliable and easy to operate compared to the conventional stub and phase shifter. There is no distortion of reflected power during the raising of the liquid level. RF breakdown voltage is over 40kV. Temperature increment of the liquid is expected not to be severe. These results verify that the liquid stub and phase shifter can be used reliably in the high power continuous RF facilities.

  • PDF

Bandwidth Enhancement of an Aperture Coupled Microstrip Patch Antenna Using a Shunt Stub (병렬 스터브를 이용한 개구면 결합 마이크로스트립 패치 안테나의 대역폭 확장)

  • Koo, Hwan-Mo;Yoon, Young-Min;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.2
    • /
    • pp.39-49
    • /
    • 2012
  • An impedance bandwidth enhancement method of an aperture coupled microstrip patch antenna (ACMPA) using a shunt stub is investigated. The conventional ACMPA with a H-shaped coupling aperture is designed and the electrical parameters for the equivalent circuit of the designed conventional ACMPA are extracted. A method for the enhancement of the impedance bandwidth of the ACMPA using a tuning stub connected in shunt with the feed line is presented. The -10 dB return loss impedance bandwidth of the ACMPA with a shunt stub is increased up to about 14 %. The maximum impedance bandwidth of the corresponding ACMPA without a shunt stub is 5.4 %. The increase of the impedance bandwidth of the ACMPA with a shunt stub compared to that of the corresponding ACMPA without a shunt stub is about 160 %.

감쇄와 위상편이에 대한 Tuning Stub가 끼치는 영향

  • 나영진;백덕수;양승인
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1988.10a
    • /
    • pp.109-113
    • /
    • 1988
  • In this paper we studied about the effects of tuning stuvs on attenuation and phase shift for micro strip feedlines Result of the analysis are good agreement with those of experiments. We found that a better way to increase the phase shift and to dectrease the attenuation may be to use multiple stubs of distances.

  • PDF

Design of CPW fed antenna using high dielectric constant materials (고유전율 유전체를 이용한 CPW 급전 안테나의 설계)

  • 심성훈;강종윤;윤석진;윤영중;김현재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.559-562
    • /
    • 2000
  • In this paper, coplanar waveguide fed antennas (CPWFAs) insetting two slits to boundary of the square microstrip patch are presented. These slits play roles in not only lowering a resonant frequency but also fine-tuning for the proposed antenna together with open stub of CPW feed line. The CPWFAs were designed and manufactured using microwave dielectrics (Al,Mg)TaO$_2$ having high dielectric-constant ($\varepsilon$r=20). The return loss and input impedance of the CPWFAs were investigated in terms of the slit length and open stub length of CPW feed line. It is shown that a resonant frequency decreases as the slit length increases.

  • PDF

MEMS TUNING ELEMENTS FOR MICRO/MILLIMETER-WAVE POWER AMPLIFIERS (마이크로/밀리미터파 대역에서 전력증폭기의 효율향상을 위한 MEMS 튜닝회로)

  • Kim, Jae-Heung
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.118-121
    • /
    • 2003
  • A new approach, using MEMS, for improving the performance of high efficiency amplifiers is proposed in this paper. The MEMS tuning element is described as a variable-length shorted CPW stub. Class-E amplifiers can be optimally tuned by these MEMS tuning elements because their operation varies with the impedance of the output tuning circuit. A MEMS tuning element was simulated using full-wave EM simulators to obtain its S-parameters. A Class-E amplifier with the MEMS was designed at 8GHz. The non-linear operation of this amplifier was simulated to explore the effect of the MEMS tuning. Comparing the initially designed amplifier without MEMS, the Power Added Efficiency (PAE) of the amplifier with MEMS is improved from 46.3% to 66.9%. For the amplifier with MEMS, the nonlinear simulation results are PAE = 66.90%, $\eta$(drain efficiency) = 75.89%, and $P_{out}$ = 23.37 dBm at 8 GHz. In this paper, the concept of the MEMS tuning element is successfully applied to the Class E amplifier designed with transmission lines.

  • PDF

Multiband Microstrip-Fed Right Angle Slot Antenna Design for Wireless Communication Systems

  • Rakluea, Paitoon;Anantrasirichai, Noppin;Janchitrapongvej, Kanok;Wakabayashi, Toshio
    • ETRI Journal
    • /
    • v.31 no.3
    • /
    • pp.271-281
    • /
    • 2009
  • This paper presents a novel multiband microstrip-fed right angle slot antenna design technique for multiple independent frequency bands. The new technique uses various slot sizes at various appropriate positions. We first propose a tri-band slot antenna consisting of three right angle slots. Then, a quad-band slot antenna is developed with four right angle slots which achieves slant ${\pm}45^{\circ}$ linear polarization, omnidirectional pattern coverage, good antenna gain, and acceptable impedance bandwidths over all the operating frequency range. Moreover, an open-circuited tuning stub is introduced to achieve good impedance matching. Both proposed antennas are designed on a ground plane of RT/duroid 5880 substrate with a thickness of 1.575 mm. The real measurable results show that the desired frequencies used in wireless communication systems, namely, WLAN and WiMax, are efficiently achieved.

  • PDF

Controllable Band-Notched Slot Antenna for UWB Communication Systems

  • Kueathaweekun, Weerathep;Anantrasirichai, Noppin;Benjangkaprasert, Chawalit;Nakasuwan, Jintana;Wakabayashi, Toshio
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.674-683
    • /
    • 2012
  • We propose a slot antenna consisting of a rectangular slot on the ground plane, fed by a microstrip line with a rectangular-ring-shaped tuning stub that can be deployed in ultra-wideband (UWB) communication systems to avoid interference with wireless local area network (WLAN) communication. Our antenna can achieve a single band-notched property from the 5 GHz frequency to the 6 GHz frequency owing to a controllable band notch that uses L- and J-shaped parasitic elements. The antenna characteristics can be modified to tune the band-notched property (4 GHz to 5 GHz or 6 GHz to 7 GHz) and the bandwidth of the band notch (1 GHz to 2 GHz). Furthermore, the shifted notch with enhanced width of the band notch from 1 GHz to 1.5 GHz is described in this paper. The UWB slot antenna and L- and J-shaped parasitic elements also provide the band-rejection function for reference in the WiMAX (3.5 GHz) and WLAN (5 GHz to 6 GHz) regions of the spectrum. Experiment results evidence the return loss performance, radiation patterns, and antenna gains at different operational frequencies.