• 제목/요약/키워드: tuned vibration control

검색결과 272건 처리시간 0.022초

복수의 TMD를 이용한 고층건물의 진동조절 (Vibration Control of Tall Buildings using Multiple Tuned Mass Dampers)

  • 민경원;홍성목
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1992년도 봄 학술발표회 논문집
    • /
    • pp.26-29
    • /
    • 1992
  • Modern tall buildings are subject to wind induced oscillations. Those oscillations can cause discomfort to the occupants. To control these motions, tuned mass dampers have been used. In this paper, component node synthesis, based on Lagrange multipliers formulation. is applied to the along-wind motion of tall buildings with multiple tuned mass dampers. Spectral densities of accelerations of top floor are compared by changing the numbers and locations of tuned mass dampers. It is found that multiple tuned mass dampers can be more effective than single tuned mass damper in reducing the acceleration response.

  • PDF

2축 동조 질량 감쇠기를 이용한 구조물의 진동 제어 연구 (A Study of the Structural Vibration Control Using a Biaxial Tuned Mass Damper)

  • 정태영
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.473-481
    • /
    • 2000
  • Civil structures are becoming more flexible and lightly damped. When subjected to dynamic loads such as wind, earthquake and wave, vibration may be easily induced and lasted for lond duration. To suppress the wind-induced and earthquake-induced vibration of high-rise buildings, study on the development of a tuned mass damper has been carried out. Based on optimal design on passive tuned mass damper which is considered for a building subject to random excitations, a biaxial tuned mass damper was designed and developed. It is confirmed that the vibration levels of the test structure are reduced using the developed tuned mass damper.

  • PDF

대형 구조물의 최적 진동제어 (OPTIMAL VIBRATION CONTROL OF LARGE STRUCTURES)

  • 윤정방;김상범
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1992년도 가을 학술발표회 논문집
    • /
    • pp.156-161
    • /
    • 1992
  • Over the past twenty years, the concept of structural control has been investigated for the application to large civil engineering structures. At the early years, passive control systems, such as tuned mass damper(TMD) and tuned liquid mass bamper(TLD), have been utilized to reduce the wind induced vibrations of tall buildings, decks and pylons of long-span bridges. More recently, the active control concept has been applied to reducing the structural vibration and increasing the human comfortness in tall buildings during strong wind. In this study, the effectiveness of the active tuned mass damper(ATMD) has been investigated for reducing vibration of large structures during strong earthquake. Stochastic optimal control theory has been employed. Example analyses are carried out through analytical simulation studies.

  • PDF

Optimal design of wind-induced vibration control of tall buildings and high-rise structures

  • Li, Qiusheng;Cao, Hong;Li, Guiqing;Li, Shujing;Liu, Dikai
    • Wind and Structures
    • /
    • 제2권1호
    • /
    • pp.69-83
    • /
    • 1999
  • The most common used control device on tall buildings and high-rise structures is active and passive tuned mass damper (ATMD and TMD). The major advantages of ATMD and TMD are discussed. The existing installations of various passive/active control devices on real structures are listed. A set of parameter optimization methods is proposed to determine optimal parameters of passive tuned mass dampers under wind excitation. Simplified formulas for determining the optimal parameters are proposed so that the design of a TMD can be carried out easily. Optimal design of wind-induced vibration control of frame structures is investigated. A thirty-story tall building is used as an example to demonstrate the procedure and to verify the efficiency of ATMD and TMD with the optimal parameters.

동조액체감쇠기의 진동제어 성능연구 (A Study on Control Performance of Tuned Liquid Damper)

  • 우성식;우운택;정란
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.536-543
    • /
    • 2005
  • This paper presents the results of experimental investigations on the response control performance of tuned liquid damper(TLD). Steel frame building model is used for the experiments. Shaking table is controled by velocity consol. Experimental variables are mass ratios(${\mu}=mass$ of TLD/mass of structure), shape ratio(depth of water/ length of TLD), number of nets(N) and tuned frequency ratio($f_l/f_s$). Results show that the greater the mass ratio is, the better the control performance is. So, it can be concluded that TLD is able to be used as a device of vibration control in the remodeling of existing buildings that are not designed to resist earthquake

  • PDF

Experimental investigation on multi-mode vortex-induced vibration control of stay cable installed with pounding tuned mass dampers

  • Liu, Min;Yang, Wenhan;Chen, Wenli;Li, Hui
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.579-587
    • /
    • 2019
  • In this paper, pounding tuned mass dampers (PTMDs) were designed to mitigate the multi-mode vortex-induced vibration (VIV) of stay cable utilizing the viscous-elastic material's energy-dissipated ability. The PTMD device consists of a cantilever metal rod beam, a metal mass block and a specially designed damping element covered with viscous-elastic material layer. Wind-tunnel experiment on VIV of stay cable model was set up to validate the effectiveness of the PTMD on multi-mode VIV mitigation of stay cable. By analyzing and comparing testing results of all testing cases, it could be verified that the PTMD with viscous-elastic pounding boundary can obviously mitigate the VIV amplitude of the stay cable. Moreover, the installed location and the design parameters of the PTMD device based on the controlled modes of the primary stay cable, would have a certain extent suppression on the other modal vibration of the stay cable, which means that the designed PTMDs are effective among a large band of frequency for the multi-mode VIV control of the stay cable.

Vibration mitigation of stay cable using optimally tuned MR damper

  • Huang, Hongwei;Sun, Limin;Jiang, Xiaolu
    • Smart Structures and Systems
    • /
    • 제9권1호
    • /
    • pp.35-53
    • /
    • 2012
  • Mechanical dampers have been proved to be one of the most effective countermeasures for vibration mitigation of stay cables in various cable-stayed bridges over the world. However, for long stay cables, as the installation height of the damper is restricted due to the aesthetic concern, using passive dampers alone may not satisfy the control requirement of the stay cables. In this connection, semi-active MR dampers have been proposed for the vibration mitigation of long stay cables. Although various studies have been carried out on the implementation of MR dampers on stay cables, the optimal damping performance of the cable-MR damper system has yet to be evaluated. Therefore, this paper aims to investigate the effectiveness of MR damper as a semi-active control device for the vibration mitigation of stay cable. The mathematical model of the MR damper will first be established through a performance test. Then, an efficient semi-active control strategy will be derived, where the damping of MR damper will be tuned according to the dynamic characteristics of stay cable, in order to achieve optimal damping of cable-damper system. Simulation study will be carried out to verify the proposed semi-active control algorithm for suppressing the cable vibrations induced by different loading patterns using optimally tuned MR damper. Finally, the effectiveness of MR damper in mitigating multi modes of cable vibration will be examined theoretically.

Vibration control of a time-varying modal-parameter footbridge: study of semi-active implementable strategies

  • Soria, Jose M.;Diaz, Ivan M.;Garcia-Palacios, Jaime H.
    • Smart Structures and Systems
    • /
    • 제20권5호
    • /
    • pp.525-537
    • /
    • 2017
  • This paper explores different vibration control strategies for the cancellation of human-induced vibration on a structure with time-varying modal parameters. The main motivation of this study is a lively urban stress-ribbon footbridge (Pedro $G\acute{o}mez$ Bosque, Valladolid, Spain) that, after a whole-year monitoring, several natural frequencies within the band of interest (normal paring frequency range) have been tracked. The most perceptible vibration mode of the structure at approximately 1.8 Hz changes up to 20%. In order to find a solution for this real case, this paper takes the annual modal parameter estimates (approx. 14000 estimations) of this mode and designs three control strategies: a) a tuned mass damper (TMD) tuned to the most-repeated modal properties of the aforementioned mode, b) two semi-active TMD strategies, one with an on-off control law for the TMD damping, and other with frequency and damping tuned by updating the damper force. All strategies have been carefully compared considering two structure models: a) only the aforementioned mode and b) all the other tracked modes. The results have been compared considering human-induced vibrations and have helped the authors on making a decision of the most advisable strategy to be practically implemented.

연결 동조질량감쇠기를 이용한 인접한 쌍둥이 구조물의 새로운 진동제어 (New Vibration Control Approach of Adjacent Twin Structures using Connecting Tuned Mass Damper)

  • 옥승용;김승민
    • 한국안전학회지
    • /
    • 제32권2호
    • /
    • pp.92-97
    • /
    • 2017
  • This study deals with new application method of the connecting tuned mass damper (CTMD) system for efficient vibration control of adjacent twin structures which have the same dynamic properties such as natural frequency and damping characteristics to each other. In the existing research, the vibration control of the twin structures has a limit to the application of the conventional damper-connection method of the twin structures. Due to the same frequency characteristics leading to the equally vibrating behaviors, it is impossible to apply the conventional connection method of the adjacent structures. In order to overcome these limitations induced by the symmetry of the dynamic characteristics, we propose a new CTMD-based control system that adopts the conventional connection configuration but unbalances the symmetric system by arranging the control device asymmetrically and then can finally achieve the efficient control performance. In order to demonstrate the applicability of the proposed system, numerical simulations of the optimally designed proposed system have been performed in comparison with the optimal design results of the existing independent single tuned mass damper (STMD) control system and the another optimal control system previously proposed by the same author, hereafter called CTMD-OsTMD. The comparative results of the control performances among STMD, CTMD-OsTMD and the proposed CTMD systems verified that the newly proposed control system can be a control-efficient and cost-effective system for vibration suppression of the two adjacent twin structures.

Bistable tuned mass damper for suppressing the vortex induced vibrations in suspension bridges

  • Farhangdoust, Saman;Eghbali, Pejman;Younesian, Davood
    • Earthquakes and Structures
    • /
    • 제18권3호
    • /
    • pp.313-320
    • /
    • 2020
  • The usage of conventional tuned mass damper (TMD) was proved as an effective method for passive mitigating vortex-induced vibration (VIV) of a bridge deck. Although a variety of linear TMD systems have been so far utilized for vibration control of suspension bridges, a sensitive TMD mechanism to wind spectrum frequency is lacking. Here, we introduce a bistable tuned mass damper (BTMD) mechanism which has an exceptional sensitivity to a broadband input of vortex shedding velocity for suppressing VIV in suspension bridge deck. By use of the Monte Carlo simulation, performance of the nonlinear BTMD is shown to be more efficient than the conventional linear TMD under two different wind load excitations of harmonic (sinusoidal) and broadband input of vortex shedding. Consequently, an appropriate algorithm is proposed to optimize the design parameters of the nonlinear BTMD for Kap Shui Mun Bridge, and then the BTMD system is localized for the interior deck of the suspension bridge.