• 제목/요약/키워드: tuned vibration control

검색결과 272건 처리시간 0.026초

실시간 하이브리드 실험법을 이용한 동조액체댐퍼가 설치된 건물의 진동제어 (Vibration Control of a Building Structure with a Tuned Liquid Damper Using Real-Time Hybrid Experimental Method)

  • 이성경;이상현;민경원;박은천;우성식;정란
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.256-263
    • /
    • 2006
  • In this paper, an experimental hybrid method, which implements the earthquake response control of a building structure with a TLD(Tuned Liquid Damper) by using only a TLD as an experimental part, is proposed and is experimentally verified through a shaking table test. In the proposed methodology, the whole building structure with a TLD is divided into the upper TLD and the lower structural parts as experimental and numerical substructures, respectively. At the moment, the control force acting between their interface is measured from the experimental TLD with shear-type load-cell which is mounted on shaking table. Shaking table vibrates the upper experimental TLD with the response calculated from the numerical substructure, which is subjected to the excitations of the measured interface control force at its top story and an earthquake input at its base. The experimental results show that the conventional method, in which both a TLD and a building structure model are physically manufactured and are tested, can be replaced by the proposed methodology with a simple experimental installation and a good accuracy for evaluating the control performance of a TLD.

  • PDF

A novel hybrid control of M-TMD energy configuration for composite buildings

  • ZY Chen;Yahui Meng;Ruei-Yuan Wang;T. Chen
    • Steel and Composite Structures
    • /
    • 제48권4호
    • /
    • pp.475-483
    • /
    • 2023
  • In this paper, a new energy-efficient semi-active hybrid bulk damper is developed that is cost-effective for use in structural applications. In this work, the possibility of active and semi-active component configurations combined with suitable control algorithms, especially vibration control methods, is explored. The equations of motion for a container bridge equipped with an MDOF Mass Tuned Damper (M-TMD) system are established, and the combination of excitation, adhesion, and control effects are performed by a proprietary package and commercial custom submodel software. Systematic methods for the synthesis of structural components and active systems have been used in many applications because of the main interest in designing efficient devices and high-performance structural systems. A rational strategy can be established by properly controlling the master injection frequency parameter. Simulation results show that the multiscale model approach is achieved and meets accuracy with high computational efficiency. The M-TMD system can significantly improve the overall response of constrained structures by modestly reducing the critical stress amplitude of the frame. This design can be believed to build affordable, safe, environmentally friendly, resilient, sustainable infrastructure and transportation.

실시간 하이브리드 진동대 실험법에 의한 양방향 TLMD의 풍응답 제어성능평가 (Wind Response Control Performance of a Two-way Tuned Liquid Mass Damper Using Real-Time Hybrid Shaking Table Testing Method)

  • 허재성;이성경;이상현;박은천;김홍진;조봉호;조지성;김동영;민경원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.189-194
    • /
    • 2007
  • An experimental real-time hybrid method, which implements the wind response control of a building structure with only a two-way TLMD, is proposed and verified through a shaking table test. The building structure is divided into the upper experimental TLMD and the lower numerical structural part. The shaking table vibrates the TLMD with the response calculated from the numerical substructure, which is subjected to the excitations of the measured interface control force at its top story and an wind-load input at its base. The results show that the conventional method can be replaced by the proposed methodology with a simple installation and accuracy for evaluating the control performance of a TLMD.

  • PDF

MOGA-Based Structural Design Method for Diagrid Structural Control System Subjected to Wind and Earthquake Loads

  • Kim, Hyun-Su;Kang, Joo-Won
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1598-1606
    • /
    • 2018
  • An integrated optimal structural design method for a diagrid structure and control device was developed. A multi-objective genetic algorithm was used and a 60-story diagrid building structure was developed as an example structure. Artificial wind and earthquake loads were generated to assess the wind-induced and seismic responses. A smart tuned mass damper (TMD) was used as a structural control system and an MR (magnetorheological) damper was employed to develop a smart TMD (STMD). The multi-objective genetic algorithm used five objectives including a reduction of the dynamic responses, additional stiffness and damping, mass of STMD, capacity of the MR damper for the integrated optimization of a diagrid structure and a STMD. From the proposed method, integrated optimal designs for the diagrid structure and STMD were obtained. The numerical simulation also showed that the STMD provided good control performance for reducing the wind-induced and seismic responses of a tall diagrid building structure.

연구소(硏究所) 건물(建物)의 슬래브 진동(振動) 성능개선(性能改善) 연구(硏究) (A Study on the Control of the Floor Vibration in a Research Building)

  • 백인희;강호섭;손영규
    • 한국건축시공학회지
    • /
    • 제7권3호
    • /
    • pp.75-82
    • /
    • 2007
  • A vibration in the building occurs by influences of the facility equipment and the structural system. As the building recently becomes higher and bigger, the vibration in the floor slab is issued. Specially, the vibration with $4{\sim}8Hz$ frequency is harder to control than any other range of frequency. This vibration easily affects human sensibility and often makes the resonance phenomenon by corresponding with the floor slab's natural frequency when people and heavy equipments move. Moreover, the permission regulations for the vibration of the building are established by building's purposes. However, it is not subdivided in detail and sometimes ambiguous to each client. Even though the vibration could cause negative influences in a research building, there is not the vibration criterion for a research building. Therefore, it is necessary to set up its own vibration criterion with the client before building and to keep checking this vibration criterion under the construction. This study proposes the reasonable control methods and the vibration criterion for floor slab's vibration which are adapted to the R4-project. The R4-project is a research building and a high-rise building also. Accordingly, this study could help to the next similar project in the design and the construction phase.

High performance active tuned mass damper inerter for structures under the ground acceleration

  • Li, Chunxiang;Cao, Liyuan
    • Earthquakes and Structures
    • /
    • 제16권2호
    • /
    • pp.149-163
    • /
    • 2019
  • By integrating an active tuned mass damper (ATMD) and an inerter, the ATMDI has been proposed to attenuate undesirable oscillations of structures under the ground acceleration. Employing the mode generalized system, the dynamic magnification factors (DMF) of the structure-ATMDI system are formulated. The criterion can then be defined as the minimization of maximum values of the DMF of the controlled structure for optimum searching. By resorting to the defined criterion and the particle swarm optimization (PSO), the effects of varying the crucial parameters on the performance of ATMDI have been scrutinized in order to probe into its superiority. Furthermore, the results of both ATMD and tuned mass dampers inerter (TMDI) are included into consideration for comparing. Results corroborate that the ATMDI outperforms both ATMD and TMDI in terms of the effectiveness and robustness. Especially, the ATMDI may greatly reduce the demand on both the mass ratio and inerter mass ratio, thus being capable of further miniaturizing both the ATMD and TMDI. Likewise the miniaturized ATMDI still keeps nearly the same stroke as the TMDI with a larger mass ratio. Hence, the ATMDI is deemed to be a high performance control device with the miniaturization and suitable for super-tall buildings.

Mitigation of seismic pounding between RC twin high-rise buildings with piled raft foundation considering SSI

  • Farghaly, Ahmed Abdelraheem;Kontoni, Denise-Penelope N.
    • Earthquakes and Structures
    • /
    • 제22권6호
    • /
    • pp.625-635
    • /
    • 2022
  • High-rise buildings (HRBs) are considered one of the most common structures nowadays due to the population growth, especially in crowded towns. The lack of land in crowded cities has led to the convergence of the HRBs and the absence of any gaps between them, especially in lands with weak soil (e.g., liquefaction-prone soil), but then during earthquakes, these structures may be exposed to the risk of collision between them due to the large increase in the horizontal displacements, which may be destructive in some cases to the one or both of these adjacent buildings. To evaluate methods of reducing the risk of collision between adjacent twin HRBs, this research investigates three vibration control methods to reduce the risk of collision due to five different earthquakes for the case of two adjacent reinforced concrete (RC) twin high-rise buildings of 15 floors height without gap distance between them, founded on raft foundation supported on piles inside a liquefaction-prone soil. Contact pounding elements between the two buildings (distributed at all floor levels and at the raft foundation level) are used to make the impact strength between the two buildings realistic. The mitigation methods investigated are the base isolation, the tuned mass damper (TMD) method (using traditional TMDs), and the pounding tuned mass damper (PTMD) method (using PTMDs connected between the two buildings). The results show that the PTMD method between the two adjacent RC twin high-rise buildings is more efficient than the other two methods in mitigating the earthquake-induced pounding risk.

혼합형 리니어 모터 댐퍼를 이용한 실규모 철골 구조물의 진동제어 (Vibration Control of Real-Size Steel Structure by Hybrid Linear Motor Damper)

  • 정정교;김두훈;박해동;박진일;정태영;문석준;임채욱
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.740-745
    • /
    • 2002
  • To control vibration of real-size steel structure, a hybrid-type linear motor damper was designed and applied to 30m steel structure at UNISON. The LMD was tuned to the first mode natural frequency of the building. In order to use for simulation data and control parameters, dynamic response characteristics of building and damper were tested. The response of building was reduced by 10 dB with LMD and H$\infty$ algorithm. This value was similar to the result of simulation.

  • PDF

퍼지이동 슬라이딩모드 제어기를 이용한 1/4차량의 ER현가장치 진동제어 (Vibration Control of Quarter Vehicle ER Suspension System Using Fuzzy Moving Sliding Mode Controller)

  • 성금길;조재완;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.644-649
    • /
    • 2006
  • This paper presents a robust and superior control performance of a quarter-vehicle electrorheological (ER) suspension system. In order to achieve this goal, a moving sliding mode control algorithm is adopted, and its moving strategy is tuned by fuzzy logic. As a first step, ER damper is designed and manufactured for a passenger vehicle suspension system, and its field-dependent damping force is experimentally evaluated. After formulating the governing equation of motion for the quarter-vehicle ER suspension system, a stable sliding surface and moving algorithm based on fuzzy logic are formulated. The fuzzy moving sliding mode controller is then constructed and experimentally implemented. Control performances of the ER suspension system are evaluated in both time and frequency domains.

  • PDF

퍼지이동 슬라이딩모드 제어기를 이용한 1/4차량의 ER현가장치 진동제어 (Vibration Control of Quarter Vehicle ER Suspension System Using Fuzzy Moving Sliding Mode Controller)

  • 성금길;조재완;최승복
    • 한국소음진동공학회논문집
    • /
    • 제16권8호
    • /
    • pp.822-829
    • /
    • 2006
  • This paper presents a robust and superior control performance of a quarter-vehicle electrorheological (ER) suspension system. In order to achieve this goal, a moving sliding mode control algorithm is adopted, and its moving strategy is tuned by fuzzy logic. As a first step, ER damper is designed and manufactured for a passenger vehicle suspension system, and its field-dependent damping force is experimentally evaluated. After formulating the governing equation of motion for the quarter-vehicle ER suspension system, a stable sliding surface and moving algorithm based on fuzzy logic are formulated. The fuzzy moving sliding mode controller is then constructed and experimentally implemented. Control performances of the ER suspension system are evaluated in both time and frequency domains.