• Title/Summary/Keyword: tuned liquid dampers

Search Result 33, Processing Time 0.028 seconds

Serviceability-oriented analytical design of isolated liquid damper for the wind-induced vibration control of high-rise buildings

  • Zhipeng Zhao;Xiuyan Hu;Cong Liao;Na Hong;Yuanchen Tang
    • Smart Structures and Systems
    • /
    • v.33 no.1
    • /
    • pp.27-39
    • /
    • 2024
  • The effectiveness of conventional tuned liquid dampers (TLDs) in controlling the wind-induced response of tall flexible structures has been indicated. However, the impaired control effect in the detuning condition or a considerably high mass cost of liquid may be incurred in ensuring the high-level serviceability. To provide an efficient TLD-based solution for wind-induced vibration control, this study proposes a serviceability-oriented optimal design method for isolated TLDs (ILDs) and derives analytical design formulae. The ILD is implemented by mounting the TLD on the linear isolators. Stochastic response analysis is performed for the ILD-equipped structure subjected to stochastic wind and white noise, and the results are considered to derive the closed-form responses. Correspondingly, an extensive parametric analysis is conducted to clarify a serviceability-oriented optimal design framework by incorporating the comfort demand. The obtained results show that the high-level serviceability demand can be satisfied by the ILD based on the proposed optimal design framework. Analytical design formulae can be preliminarily adopted to ensure the target serviceability demand while enhancing the structural displacement performance to increase the safety level. Compared with conventional TLD systems, the ILD exhibits higher effectiveness and a larger frequency bandwidth for wind-induced vibration control at a small mass ratio.

Experimental study on a new damping device for mitigation of structural vibrations under harmonic excitation

  • Alih, Sophia C.;Vafaei, Mohammadreza;Ismail, Nufail;Pabarja, Ali
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.567-576
    • /
    • 2018
  • This manuscript introduces a new damping device which is composed of a water tank and a pendulum. The new damping device can be tuned to multiple frequencies. In addition, it has a higher energy dissipation capacity when compared with the conventional Tuned Liquid Dampers (TLDs). In order to evaluate the efficiency of this new damping device a series of free vibration and forced vibration tests were conducted on a scaled down single-story one-bay steel frame. Two different configurations were studied for the mass of the pendulum that included a completely and a partially submerged mass. It was observed that the completely submerged configuration led to 44% higher damping ratio when compared with the conventional TLD. In addition, the completely submerged configuration reduced the peak displacement response of the structure 1.6 times more than the conventional TLD. The peak acceleration response of the structure equipped with the new damping device was reduced twice more than the conventional TLD. It was also found that, when the excitation frequency is lower than the resonance frequency, the conventional TLD performs better than the partially submerged configuration of the new damping device.

Sloshing of liquids in partially filled tanks - a review of experimental investigations

  • Eswaran, M.;Saha, Ujjwal K.
    • Ocean Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.131-155
    • /
    • 2011
  • Liquid sloshing constitutes a broad class of problems of great practical importance with regard to the safety of liquid transportation systems, such as tank trucks on highways, liquid tank carriages on rail roads, ocean going vessels and propellant tanks in liquid rocket engines. The present work attempts to give a review of some selected experimental investigations carried out during the last couple of decades. This paper highlights the various parameters attributed to the cause of sloshing followed by effects of baffles, tank inclination, magnetic field, tuned liquid dampers, electric field etc. Further, recent developments in the study of sloshing in micro and zero gravity fields have also been reported. In view of this, fifteen research articles have been carefully chosen, and the work reported therein has been addressed and discussed. The key issues and findings have been compared, tabulated and summarized.

Experimental Verification of a Liquid Damper with Changeable Natural Frequency for Building Response Control (고유진동수 조절이 가능한 액체댐퍼의 건물응답 제어실험)

  • Kim, Dong-Ik;Min, Kyung-Won;Park, Ji-Hun;Kim, Jae-Keon;Hwang, Kyu-Seok;Gil, Yong-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.4
    • /
    • pp.323-330
    • /
    • 2012
  • This study deals with the experiments of liquid dampers with multi cells whose vertical tubes are divided into several square columns for easily changing natural frequencies. Shaking table test is performed to verify control effectiveness of the dampers which are installed on a building structure. To design liquid dampers, a 64-story building structure is reduced to a SDOF structure with 1/20 of similitude laws based on acceleration. The structure model is made up to adjust its mass and stiffness easily, with separate mass and drive parts. Mass parts indicate real structure's weights and drive parts indicate real structure's stiffness with springs and LM guides. Manufactured liquid damper has 18 cells and its natural frequency ranges are 0.65Hz to 0.81Hz. Shaking table test is carried out with one way excitation to compare with only accelerations of a large-scale structure and a structure installed with liquid dampers. Control performance of the liquid damper is expressed by the transfer function from shaking table accelerations to the large-scale structure ones. Testing results show that the liquid damper reduced a large-scale structure's response by tuned natural frequencies.

Innovative Liquid Damper for Wind-Induced Vibration of Buildings: Performance after 4 Years of Operation, and Next Iteration

  • Ghisbain, Pierre;Mendes, Sebastian;Pinto, Marguerite;Malsch, Elisabeth
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.2
    • /
    • pp.117-121
    • /
    • 2021
  • In 2016, an innovative liquid damper system was installed on the roof of a 35-story modular building in Brooklyn, NY to mitigate wind-induced movement of the structure. The new damper presented several advantages over traditional pendulum, liquid column or sloshing dampers, including lower fabrication and maintenance costs, modularity, and the flexibility to be tuned to a wider range of frequencies. The performance of the system was monitored on a regular basis over the past four years and found adequate, with only minor re-tuning and maintenance operations needed. Based on the experience and data gained through this project, a second iteration of the damper was developed. Called Hummingbird, the improved system further mitigates maintenance and tuning concerns, while allowing significant space savings.

Experimental study on TLDs equipped with an upper mounted baffle

  • Shad, Hossein;Adnan, Azlan bin;Vafaei, Mohammadreza;Behbahani, Hamid Pesaran;Oladimeji, Abdulkareem M.
    • Smart Structures and Systems
    • /
    • v.21 no.1
    • /
    • pp.37-51
    • /
    • 2018
  • Tuned Liquid Dampers (TLDs) have gained wide acceptance as a system for structural control and energy dissipation. However, they face limitation caused by low damping in deep water, which affects their efficiency. Another problem with deep water TLDs is that not all water depth participates in energy dissipation. This paper investigated the effect of upper mounted baffles on the effectiveness of TLDs. The Vertical Blockage Ratio (VBR) of baffles ranged from 10% - 90%. The TLD (with and without baffle), structure, and combined structure with TLD (with and without baffles) were subjected to free and harmonic forced vibrations. Results indicated that baffles could significantly enhance the energy dissipation of TLDs, thus reducing structural responses more than structures equipped with ordinary TLDs. It was found that, there was an optimum value of VBR in which the TLD's efficiency was maximized. When TLD had an appropriate VBR, the structural acceleration and displacement responses were suppressed significantly up to 51% and 56%, respectively.

Efficiency of TLDs with bottom-mounted baffles in suppression of structural responses when subjected to harmonic excitations

  • Shad, Hossein;Adnan, Azlan;Behbahani, Hamid Pesaran;Vafaei, Mohammadreza
    • Structural Engineering and Mechanics
    • /
    • v.60 no.1
    • /
    • pp.131-148
    • /
    • 2016
  • Tuned Liquid Dampers (TLDs) provide low damping when it comes to deep water condition, and that not all water depth is mobilized in energy dissipation. This research focussed on a method to improve the efficiency of TLDs with deep water condition. Several bottom-mounted baffles were installed inside a TLD and the dynamic characteristics of modified TLDs together with their effect on the vibration control of a SDOF structure were studied experimentally. A series of free vibration and harmonic forced vibration tests were carried out. The controlling parameter in the conducted tests was the Vertical Blocking Ratio (VBR) of baffles. Results indicated that increase in VBR decreases the natural frequency of TLD and increases its damping ratio. It was found that the VBR range of 10% to 30% reduced response of the structure significantly. The modified TLD with the VBR of 30% showed the best performance when reduction in structural responses under harmonic excitations were compared.

Dynamic Characteristics of Tuned Liquid Column Dampers Using Shaking Table Test (진동대실험에 의한 동조액체기둥감쇠기의 동적특성)

  • Min, Kyung-Won;Park, Eun-Churn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.620-627
    • /
    • 2009
  • Shaking table test was carried out to obtain dynamic characteristics of TLCDs with uniform and non-uniform sections for both horizontal and vertical tubes. The input to the table is harmonic acceleration with constant magnitude. The output is horizontal dynamic force which is measured by load cell installed below the TLCD. Transfer functions are experimentally obtained using the ratio of input and output. Natural frequency, the most important design factor, is compared to that by theoretical equation for TLCDs with five different water levels. System identification process is performed for experimentally obtained transfer functions to find the dynamic characteristics of head loss coefficient and effective mass of TLCDs. It is found that their magnitudes are larger for a TLCD with non-uniform section than with uniform section and natural frequencies are close to theoretical ones.

Seismic Performance of SDF Systems with Tuned Liquid Damper Subjected to Ground Motions (지진 하중에 대한 동조액체감쇠기 성능 수치해석 검토)

  • Han, Sang-Whan;Oh, Seung-Bo;Ha, Sung-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.261-268
    • /
    • 2016
  • Tuned Liquid Dampers(TLD) are energy dissipation devices that have been proposed to control the dynamics response of structure. The TLD has been shown to effectively control the wind response of structures. However, controlling responses of structures with TLD under seismic loads are not fully investigated. The objective of this study is to evaluate the seismic performance of single degree of freedom(SDF) with TLDs having various tuning and mass raitos. For this purpose, analytical studies are conducted. Different soil conditions are considered in this study. As a result, performance of TLD, appeared diffrently depending on the natural period, damping ratio of the structure. Also TLD tuning ratio appeared differently.

Analytical and experimental research on wind-induced vibration in high-rise buildings with tuned liquid column dampers

  • Liu, Ming-Yi;Chiang, Wei-Ling;Chu, Chia-Ren;Lin, Shih-Sheng
    • Wind and Structures
    • /
    • v.6 no.1
    • /
    • pp.71-90
    • /
    • 2003
  • In recent years, high-strength, light-weight materials have been widely used in the construction of high-rise buildings. Such structures generally have flexible, low-damping characteristics. Consequently, wind-induced oscillation greatly affects the structural safety and the comfort of the building's occupants. In this research, wind tunnel experiments were carried out to study the wind-induced vibration of a building with a tuned liquid column damper (TLCD). Then, a model for predicting the aerodynamic response in the across-wind direction was generated. Finally, a computing procedure was developed for the analytical modeling of the structural oscillation in a building with a TLCD under the wind load. The model agrees substantially with the experimental results. Therefore, it may be used to accurately calculate the structural response. Results from this investigation show that the TLCD is more advantageous for reducing the across-wind vibration than the along-wind oscillation. When the across-wind aerodynamic effects are considered, the TLCD more effectively controls the aerodynamic response. Moreover, it is also more useful in suppressing the acceleration than the displacement in biaxial directions. As s result, TLCDs are effective devices for reducing the wind-induced vibration in buildings. Parametric studies have also been conducted to evaluate the effectiveness of the TLCD in suppressing the structural oscillation. This study may help engineers to more correctly predict the aerodynamic response of high-rise buildings as well as select the most appropriate TLCDs for reducing the structural vibration under the wind load. It may also improve the understanding of wind-structure interactions and wind resistant designs for high-rise buildings.