DOI QR코드

DOI QR Code

Sloshing of liquids in partially filled tanks - a review of experimental investigations

  • Eswaran, M. (Department of Mechanical Engineering, Indian Institute of Technology Guwahati) ;
  • Saha, Ujjwal K. (Department of Mechanical Engineering, Indian Institute of Technology Guwahati)
  • Received : 2010.12.05
  • Accepted : 2011.06.05
  • Published : 2011.06.25

Abstract

Liquid sloshing constitutes a broad class of problems of great practical importance with regard to the safety of liquid transportation systems, such as tank trucks on highways, liquid tank carriages on rail roads, ocean going vessels and propellant tanks in liquid rocket engines. The present work attempts to give a review of some selected experimental investigations carried out during the last couple of decades. This paper highlights the various parameters attributed to the cause of sloshing followed by effects of baffles, tank inclination, magnetic field, tuned liquid dampers, electric field etc. Further, recent developments in the study of sloshing in micro and zero gravity fields have also been reported. In view of this, fifteen research articles have been carefully chosen, and the work reported therein has been addressed and discussed. The key issues and findings have been compared, tabulated and summarized.

Keywords

References

  1. Abramson, H.N. (1966), "The dynamics of liquids in moving containers", Report SP 106, NASA.
  2. Akyildiz, H. and Unal E. (2005), "Experimental investigation of pressure distribution on rectangular tank due to sloshing" , Ocean Eng., 32(11-12), 1503-1516. https://doi.org/10.1016/j.oceaneng.2004.11.006
  3. Akyildiz, H. (2002), "Experimental investigation of pressure distribution on a cylinder due to the wave diffraction in a finite water depth", Ocean Eng., 29(9), 1119-1132. https://doi.org/10.1016/S0029-8018(01)00061-0
  4. Baeten, A. (2009), "Optimization of LNG tank shape in terms of sloshing impact pressure", Proceedings of the 19th International Offshore and Polar Engineering Conference (ISOPE), Osaka, Japan, June 21-26.
  5. Behr, M. and Abraham F. (2002), "Free-surface flow simulations in the presence of inclined walls", Comput. Method. Appl. M., 191(47-48), 5467-5483. https://doi.org/10.1016/S0045-7825(02)00444-9
  6. Bogaert H., Leonard S., Brosset L. and Kaminski ML. (2010), "Sloshing and scaling: results from the sloshel project", Proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference, Beijing, China.
  7. Bradford, S.F. (1999), "Numerical simulations of liquid sloshing in microgravity field", Naval Research Laboratory, NRL/MR/7260-99-8387, 1-15.
  8. Brosset, L., Mravak, Z., Kaminski, M., Collins, S. and Finnigan, T. (2009), "Overview of Sloshel project", Proceedings of the19th International Offshore and Polar Enineering Conference, Osaka, Japan, ISOPE.
  9. Bugg, F. (1970), "Determination of liquid oscillation frequency in an inclined right circular cylinder", NASA TM X-64540.
  10. Colagrossi A., Palladino F., Greco M., Lugni C. and Faltinsen OM. (2004), "Experimental and numerical investigation of 2D sloshing: scenarios near the critical filling depth", Proceedings of the 19th International Workshop on Water Waves and Floating Body, Cortona, Italy.
  11. Chiba, M. (1992), "Nonlinear hydroelastic vibration of a cylindrical tank with elastic bottom containing liquid. Part I Experiment", J. Fluid. Struct., 6(2), 181-206. https://doi.org/10.1016/0889-9746(92)90044-4
  12. Cole, H.A. (1966), "Baffle thickness effects in fuel sloshing experiments", NASA TN D-3716.
  13. Demirbilek Z, (1982), "A linear theory of viscous liquid sloshing", Ph.D.thesis, Texas A&M University, College Station, Texas, USA.
  14. Demirbilek Z, (1983), "Energy dissipation in sloshing waves in a rolling rectangular tank-III.-Results and applications", Ocean Eng., 10(5), 375-382. https://doi.org/10.1016/0029-8018(83)90006-9
  15. Dias F, Dutykh D and Ghidaglia J.M. (2010), "A two-fluid model for violent aerated flows", Comput. Fluids, 39(2), 283-293. https://doi.org/10.1016/j.compfluid.2009.09.005
  16. Dodge, F. (1966), "Experimental and theoretical studies of liquid sloshing at simulated low gravities", Technical Report No. 2, Contract No. NAS8-20290, National Aeronautics and Space Administration, Alabama.
  17. Drosos, G.C., Dimas A.A. and Karabalis D.L. (2008), "Discrete models for seismic analysis of liquid storage tanks of arbitrary shape and fill height", J. Press. Vess-T. ASME., 130(4), 041801-1-12. https://doi.org/10.1115/1.2967834
  18. Faltinsen, O.M. (1974), "A nonlinear theory of sloshing in rectangular tanks", J. Ship Res., 18(4), 224-241.
  19. Feng, G.C. (1973), "Dynamic loads due to moving liquid", AIAA Paper No: 73, 409.
  20. Frandsen, J.B. and Borthwick, A.G.L. (2003), "Simulation of sloshing motions in fixed and vertically excited containers using A 2-D inviscid o -transformed finite difference solver", J. Fluid. Struct., 18(2), 197-214. https://doi.org/10.1016/j.jfluidstructs.2003.07.004
  21. Fujino, Y., Sun, L. and Pacheco, B.M. (1992), "Tuned liquid damper (TLD) for suppressing horizontal motion of structures", J. Eng. Mech., 118(10), 2017-2030. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:10(2017)
  22. Godderidge, B., Turnock, S., Earl C. and Tan M. (2009), "The effect of fluid compressibility on the simulation of sloshing impacts", Ocean Eng., 36(8), 578-587. https://doi.org/10.1016/j.oceaneng.2009.02.004
  23. Godderidge, B., Turnock, S., Tan, M. and Earl, C. (2009), "An investigation of multiphase CFD modelling of a lateral sloshing tank", Comput. Fluids, 38(2),183-193. https://doi.org/10.1016/j.compfluid.2007.11.007
  24. Graczyk, M. Moan, T. and Rognebakke, O. (2006), "Probabilistic analysis of characteristic pressure for LNG tanks", J. Offshore Mech. Arct.,128(2), 133-144. https://doi.org/10.1115/1.2185128
  25. Graham, E.W. and Rodriquez, A.M. (1952), "The characteristics of fuel motion which affect airplane dynamics", J. Appl. Mech., 19(3), 381-388.
  26. Grundelius, M. and Bernhardsson, B. (1999), "Control of liquid slosh in an industrial packaging machine", Proceedings of the IEEE International Conference on Control Applications, 1654-1659.
  27. Guzel, U.B., Gradinscak M., Semercigil S.E. and Turan O.F. (2004), "Control of liquid sloshing in flexible containers part 1. Added mass", Proceedings of the 15th Australasian Fluid Mechanics Conference.
  28. Haroun, M.A. (1980), "Dynamic analysis of liquid storage tanks", Report EERL, No. 80-4, California Institute of Technology, Pasadena, Calif.
  29. Haroun, M.A. (1983), "Vibration studies and tests of liquid storage tanks", Earthq. Eng. Struct. D., 11(2), 179-206. https://doi.org/10.1002/eqe.4290110204
  30. Hashimoto, H., and Sudo, S. (1988), "Violent liquid sloshing in vertically excited cylindrical containers", Exp. Therm. Fluid Sci., 1(2), 159-169. https://doi.org/10.1016/0894-1777(88)90033-7
  31. Hatayama, K., Zama, S., Nishi, H., Yamada, M., Hirokawa, M. and Inoue, R. (2005), "The damages of oil storage tanks during the 2003 tokachi-oki earthquake and the long period ground motions", Proceedings of the JSCE-AIJ Joint Symposium on Huge Subduction Earthquakes-Wide Area Strong Ground Motion Prediction.
  32. Hirt, C.W. and Nichols, B.D. (1981), "Volume of fluid (VOF) method for the dynamics of free boundaries", J. Comp. Phys., 39, 201-205. https://doi.org/10.1016/0021-9991(81)90145-5
  33. Housner, G.W. (1957), "Dynamic pressures on accelerated fluid containers", B. Seismol. Soc. Am ., 47(1), 15-35.
  34. Housner, G.W. (1963), "The dynamic behavior of water tanks", B. Seismol. Soc. Am., 53(2), 381-387.
  35. Hwang, Y., Jung, J., Kim, D. and Ryu, M. (2008), "An experimental study and numerical simulation on sloshing impact pressures with two identically shaped rectangular 2-dimensional model tanks with different sizes", Proceedings of the Eighteenth International Offshore and Polar Engineering Conference, Canada.
  36. Jacobsen, L.S. and Ayre, R.S. (1951), "Hydrodynamic experiments with rigid cylindrical tanks subjected to transient motions", Bulletin of the Seismological Society of America, 41(4), 313-346.
  37. Kimura, K., Ogura, K., Mieda, T., Yamamoto, K., Eguchi, Y., Moriya, S., Hagiwara, Y., Takakuwa, M., Kodama, T. and Kolke, K. (1995), "Experimental and analytical studies on the multi-surface sloshing characteristics of a top entry loop type FBR", Nucl. Eng. Des., 157(1-2), 49-63. https://doi.org/10.1016/0029-5493(95)00982-I
  38. Labus, T. (1969), "Natural frequency of liquids in annular cylinders under low gravitational conditions", Lewis Research Center, NASA TN-D-5412.
  39. Lamb, H., (1932), Hydrodynamics, (6th ed.), Cambridge University Press, Cambridge.
  40. Lee, S.J., Kim, M.H., Lee, D.H., Kim, J.W. and Kim, J.H. (2007), "The effects of LNG-tank sloshing on the global motions of LNG carriers", Ocean Eng., 34(1), 10-20. https://doi.org/10.1016/j.oceaneng.2006.02.007
  41. Liu, D., and Lin, P. (2008), "A numerical study of three-dimensional liquid sloshing in tanks", J. Comput. Phys., 227(8), 3921-3939. https://doi.org/10.1016/j.jcp.2007.12.006
  42. Luppes, R., Helder, J.A. and Veldman, A.E.P. (2006), "The numerical simulation of liquid sloshing in microgravity", Proceedings of the European Conference on Computational Fluid Dynamics, 1-19.
  43. Matsui, T. (2007), "Sloshing in a cylindrical liquid storage tank with a floating roof under seismic excitation", J. Press. Vess-T. ASME, 129(4), 557-566. https://doi.org/10.1115/1.2767333
  44. Matsui, T. (2009), "Sloshing in a cylindrical liquid storage tank with a single-deck type floating roof under seismic excitation", J. Press. Vess-T. ASME, 131(2), 021303-1-10. https://doi.org/10.1115/1.3062939
  45. Moaleji, R. and Greig A.R. (2007), "On the development of ship anti-roll tanks", Ocean Eng., 34(1), 103-121. https://doi.org/10.1016/j.oceaneng.2005.12.013
  46. Modi, V.J. and Munshi S.R. (1998), "An efficient liquid sloshing damper for vibration control", J. Fluid. Struct.,12(8), 1055-1071. https://doi.org/10.1006/jfls.1998.0182
  47. Nasar, T., Sannasiraj, S.A., and Sundar, V. (2008), "Experimental study of liquid sloshing dynamics in a barge carrying tank", Fluid Dyn. Res., 40(6), 427-458. https://doi.org/10.1016/j.fluiddyn.2008.02.001
  48. Pal, N.C., Bhattacharyya, S.K. and Sinha, R.K. (2001), "Experimental investigation of slosh dynamics of liquidfilled containers", Exp. Mech., 41(1), 63-69. https://doi.org/10.1007/BF02323106
  49. Panigrahy, P.K. (2006), "Development of a test setup to study the sloshing behaviour of liquids in baffled tanks", M.Tech thesis, IIT Guwahati.
  50. Panigrahy, P.K., Saha U.K. and Maity D. (2009), "Experimental studies on sloshing behavior due to horizontal movement of liquids in baffled tanks", Ocean Eng., 36(3-4), 213-222. https://doi.org/10.1016/j.oceaneng.2008.11.002
  51. Papell, S.S. (1965), "Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles", U.S. Patent, 3215,572.
  52. Partom, L.S. (1987), "Application of the VOF method to the sloshing of a fluid in a partially filled cylindrical container", Int. J. Numer. Meth. Fl., 7(6), 535-550. https://doi.org/10.1002/fld.1650070602
  53. Popov, G., Sankar, S., Sankar, T.S. and Vatista, G.H. (1992), "Liquid sloshing in rectangular road containers", Comput. Fluids, 21(4), 551-569. https://doi.org/10.1016/0045-7930(92)90006-H
  54. Rhee, S.H. (2005), "Unstructured grid-based Reynolds-averaged Navier-Stokes method for liquid tank sloshing", J. Fluis Eng., 127(3), 572-582. https://doi.org/10.1115/1.1906267
  55. Romero, J.A., Ramyrez, O., Fortanell, J.M., Martinez, M. and Lozano, A. (2005), "Analysis of lateral sloshing forces within road containers with high fill levels", Proceedings of the IMechE, Part D: J. Automobile Engineering, 220, 303-312.
  56. Rosenweig, R.E., Popplewell, J. and Johnston, R.J. (1997), "Magnetic fluid motion in rotating field", J. Magnet. Magnet. Mater., 85(1-3), 171-180.
  57. Sakamoto, D., Oshima N. and Fukuda T. (2001), "Tuned sloshing damper using electro-rheological fluid", Smart Mater. Struct.,10(5), 963-969. https://doi.org/10.1088/0964-1726/10/5/312
  58. Sawada, T., Kikura, H., Shibata, S. and Tanahashi, T. (1993), "Lateral sloshing of a magnetic fluid in a container", Journal of Magnetism and Magnetic Materials, 122(1-3), 424-427. https://doi.org/10.1016/0304-8853(93)91124-P
  59. Sawada, T., Ohira, Y. and Houda, H. (2002), "Sloshing motion of the magnetic fluid in a cylindrical container due to the horizontal oscillation", Energ. Convers. Manage., 43(3), 299-308. https://doi.org/10.1016/S0196-8904(01)00103-0
  60. Sayar, B.A. and Baumgarten J.R. (1982), "Linear and nonlinear analysis of fluid slosh dampers", AIAA J., 20(11), 1534. https://doi.org/10.2514/3.7990
  61. Snyder, H.A. (1999), "Sloshing in microgravity", Cryogenics, 39, 1047-1055. https://doi.org/10.1016/S0011-2275(99)00120-4
  62. Snyder, H.A. (2004), "Effect of rotation on sloshing in low-gravity", Cryogenics, 44, 525-536. https://doi.org/10.1016/j.cryogenics.2004.02.011
  63. Sudo, S., Hashimoto, H., Ikeda, A. and Katagiri, K. (1987), "Some studies on magnetic Liquid Sloshing", J. Magnet. Magnet. Mater, 65, 219-222. https://doi.org/10.1016/0304-8853(87)90036-9
  64. Sweedan, A.M.J. (2009), "Equivalent mechanical model for seismic forces in combined tanks subjected to vertical earthquake excitation", Thin Wall Struct., 47(8-9), 942-952. https://doi.org/10.1016/j.tws.2009.02.001
  65. Taniguchi, T. (2004), "Rocking behavior of unanchored flat-bottom cylindrical shell tanks under action of horizontal base excitation", Eng. Struct., 26(4), 415-426. https://doi.org/10.1016/j.engstruct.2003.10.013
  66. Terashima, K. and Yano, K. (2001), "Sloshing analysis and suppression control of tilting-type automatic pouring machine", Control. Eng. Pract., 9(6), 607-620. https://doi.org/10.1016/S0967-0661(01)00023-5
  67. Topliss, M.E., Cooker, M.J. and Peregrine, D.H. (1992), "Pressure oscillations during wave impact on vertical walls", Proceedings of the 23th International Conference on Coastal Engineering, ASCE.
  68. Ueda, T., Nakagaki, R. and Koshida, K. (1992), "Suppression of wind-induced vibration by dynamic dampers in tower-like structures", J. Wind Eng. Ind. Aerod., 41-44, 1907-1918.
  69. Utsumi, M. (2000), "Low-gravity sloshing in an axisymmetrical container excited in the axial direction", J. Appl. Mech., 67(2), 344-354. https://doi.org/10.1115/1.1307500
  70. Utsumi, M. (2004), "A mechanical model for low-gravity sloshing in an axisymmetric tank", J. Appl. Mech., 71(5), 724-730. https://doi.org/10.1115/1.1794700
  71. Utsumi, M. (2008), "Low gravity low-gravity slosh analysis for cylindrical tanks with hemiellipsoidal top and bottom", J. Spacecraft Rockets, 45(4), 813-821. https://doi.org/10.2514/1.35057
  72. Utsumi, M. and Ishida K. (2008), "Vibration analysis of a floating roof taking into account the nonlinearity of sloshing", J. Appl. Mech., 75(4), 041008-1-10. https://doi.org/10.1115/1.2912739
  73. Valentine, D.T. (2005), "Numerical investigation of two-dimensional sloshing: nonlinear internal waves", J. Offshore Mech. Arct.,127(4), 300-305. https://doi.org/10.1115/1.2073154
  74. Vandiver, J.K. and Mitome, S. (1982), "Effect of liquid storage tanks on the dynamic response of offshore platforms. In: C.L. Kirk, Editor, 1st ed., Dynamic Analysis of Offshore Structures: Recent Developments, Progress in Engineering Sciences 1, CML Publications, Southampton, 25-32.
  75. Veldman, A.E.P., Gerrits, J., Luppes, R., Helder, J.A. and Vreeburg, J.P.B. (2007), "The numerical simulation of iquid sloshing on board spacecraft", J. Comput. Phys., 224(1), 82-99. https://doi.org/10.1016/j.jcp.2006.12.020
  76. Warnitchai, P. and Pinkaew T. (1998), "Modeling of the liquid sloshing in rectangular tanks with flow damping device", Eng. Struct., 20(2), 593-600. https://doi.org/10.1016/S0141-0296(97)00068-0
  77. Wiesche, S. (2006), "Noise due to sloshing with in automotive fuel tanks", Forsch Ingenieurwes, 70(1), 13-24.
  78. Winslow, W.M. (1949), "Induced vibrations of suspensions", J. Appl. Phys., 20, 1137-1140. https://doi.org/10.1063/1.1698285
  79. Yano, K. and Terashima, K. (2005), "Sloshing suppression control of liquid transfer systems considering a 3-D transfer path", IEEE/ASME Transactions on Mechatronics, 10(1), 8-16. https://doi.org/10.1109/TMECH.2004.839033
  80. Yuanjun, H., Xingrui, M., Pingping, W. and Benli, W. (2007), "Low-gravity liquid nonlinear sloshing analysis in a tank under pitching excitation", J. Sound Vib., 299(1-2), 164-177. https://doi.org/10.1016/j.jsv.2006.07.003

Cited by

  1. Oscillations in a half-empty bottle vol.86, pp.2, 2018, https://doi.org/10.1119/1.5009664
  2. Fluid-structure interaction analysis of sloshing in an annular - sectored water pool subject to surge motion vol.3, pp.3, 2013, https://doi.org/10.12989/ose.2013.3.3.181
  3. Effect of higher modes and multi-directional seismic excitations on power plant liquid storage pools vol.8, pp.3, 2015, https://doi.org/10.12989/eas.2015.8.3.779
  4. Linearized formulation for fluid–structure interaction: Application to the linear dynamic response of a pressurized elastic structure containing a fluid with a free surface vol.332, pp.10, 2013, https://doi.org/10.1016/j.jsv.2012.07.036
  5. Liquid Sloshing in Fuel Storage Bays of Advanced Reactor Subjected to Earthquake Loading vol.144, 2016, https://doi.org/10.1016/j.proeng.2016.05.118
  6. An analytical solution for free liquid sloshing in a finite-length horizontal cylindrical container filled to an arbitrary depth vol.48, 2017, https://doi.org/10.1016/j.apm.2017.03.060
  7. Experimental study of sloshing noise in a partially filled rectangular tank under periodic excitation pp.2041-2991, 2018, https://doi.org/10.1177/0954407018809300
  8. Viscous Regularization of Breaking Faraday Waves vol.107, pp.11, 2018, https://doi.org/10.1134/S0021364018110061
  9. Experimental investigation of the sloshing motion of the water free surface in the draft tube of a Francis turbine operating in synchronous condenser mode vol.59, pp.6, 2018, https://doi.org/10.1007/s00348-018-2552-x
  10. Investigation of the Equivalent Test Condition for the Seismic Safety Assessment of a Spent Fuel Pool with regard to Sloshing Behavior vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/1418265
  11. Free and Forced Oscillations of Magnetic Liquids Under Low-Gravity Conditions vol.87, pp.2, 2020, https://doi.org/10.1115/1.4045620
  12. Modeling Transient Liquid Slosh Behavior at Variable Operating Speeds Induced by Intermittent Motions in Packaging Machines vol.10, pp.5, 2020, https://doi.org/10.3390/app10051859
  13. Assessment of breaking waves and liquid sloshing impact vol.100, pp.3, 2011, https://doi.org/10.1007/s11071-020-05605-7
  14. Fluid Pressure Response of Steel Water Tanks Accounting for the Effect of Vertical Ground Motion vol.32, pp.3, 2011, https://doi.org/10.7781/kjoss.2020.32.3.149
  15. Nonlinear response of acid storage tank coupled with piping attachment under seismic load for optimal safe design vol.18, pp.1, 2021, https://doi.org/10.1590/1679-78256301
  16. Fatigue life and effect of sloshing according to the scale ratio of a prismatic LNG tank vol.35, pp.2, 2021, https://doi.org/10.1007/s12206-021-0109-z
  17. Sessile liquid drops damp vibrating structures vol.33, pp.6, 2011, https://doi.org/10.1063/5.0055382