• Title/Summary/Keyword: tunable

Search Result 898, Processing Time 0.023 seconds

A Novel Compact Tunable Bandpass Filter Loaded Varactor Diode on the DGS

  • Kim, Gi-Rae
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.3
    • /
    • pp.263-266
    • /
    • 2010
  • In this paper, a novel defected ground structure (DGS) pattern with enhanced effective capacitance (varactor diode) and a hole in PCB center is presented. The increase in effective capacitance enables the new DGS pattern to achieve a lower resonance than the DGS pattern for the same etched square dimension. The hole in the center also can make resonator frequency lower with better characteristic. According to the tunable characteristic of varactor diode, the resonant frequencies can be tunable. Simulation results show that a lower resonance is achieved with active device, compared to a common DGS pattern.

Compact Metamaterial-Based Tunable Zeroth-Order Resonant Antenna with Chip Variable Capacitor

  • Jung, Youn-Kwon;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.3
    • /
    • pp.189-191
    • /
    • 2013
  • This letter presents a compact metamaterial-based tunable zeroth-order resonant antenna. It is based on the double-negative unit cell with a function of tunable inductance realized by a varactor and impedance convertor in the shunt branch. The resonant frequency of the designed antenna ranges from 2.31 to 3.08 GHz, depending on the capacitance of the used varactor. Its size is very compact ($0.05{\lambda}_0{\times}0.2{\lambda}_0$) with a relatively wide tunable range of 29.1%. The impedance bandwidth of the antenna is from 20 to 50 MHz for the resonant center frequency. The measured maximum total realized gain is from -0.68 dBi (2.43 GHz) to 1.69 dBi (2.97 GHz). The EM-simulated and measured results are in good agreement.

A Flexible and Tunable Microwave Photonic Filter Based on Adjustable Optical Frequency Comb Source

  • Tran, Thanh Tuan;Seo, Dongsun
    • Journal of IKEEE
    • /
    • v.19 no.1
    • /
    • pp.27-32
    • /
    • 2015
  • A flexible and tunable microwave photonic filter based on adjustable optical frequency comb source is demonstrated. We use a combination of a dual parallel Mach Zehnder modulator and an intensity modulator to generate fifteen comb lines with proper weights to implement a desired filter. The optical comb weights, corresponding to the tap coefficients of the filter, are flexibly changed by adjusting the operation parameters of the modulators. The achieved bandwidth and stopband attenuation of the tunable filter are 0.7 GHz and 20 dB, respectively. In addition, we overcome the undesired low frequency suppression appeared in a conventional scheme by applying a dual parallel Mach Zehnder modulator for single sideband suppressed carrier modulation.

The Effect of Perimeter on Characteristics of Frequency-Agile Tunable Capacitors

  • Lee, Young Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.561-563
    • /
    • 2012
  • In this work, tunable capacitors using a finger-type electrode are designed and characterized for frequency-agile RF circuit applications. Their top electrodes with different area and line width are designed in types of the finger for a long conducting perimeter which results in enhanced fringing-electric fields in order to improve their tunability. The tunable varactors were fabricated on a quartz substrate employing a multi-layer dielectric of a para/ferro/para-electric thin film. Compared to the conventional capacitor, finger-type capacitors are characterized in terms of effective capacitance and tunablility. Their effective capacitance and tunability with the long perimeter increase 24~40% and 7~12%, respectively, due to enhanced fringing electric fields from 1 to 2.5 GHz, compared to the conventional ones.

  • PDF

Design and Fabrication of a Phase Shifter RFIC using a Tunable Multi-layer Dielectric

  • Lee, Young Chul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.19 no.2
    • /
    • pp.45-49
    • /
    • 2014
  • In this work, a phase shifter radio-frequency integrated chip (RFIC) using a simple all-pass network is presented. As a tuning element of the phase shifter RFIC, tunable capacitors with a multi-layer dielectric of a para-/ferro-/para-electrics using a high tunable BST ferroelectric and a low-loss BZN paraelectric thin film were utilized. In order to evaluate and analyze the fabricated phase shifter RFIC, the same elements such as an inductor and capacitor integrated into it are also fabricated and tested. The designed phase shifter RFIC was fabricated on a quartz substrate in the size of $1.16{\times}1.21mm^2$. As the test results, the maximum phase difference of $350^{\circ}$ is obtained at 15 V and its tuning frequency bandwidth is 90 MHz from 2.72 to 2.81GHz.

Design of 950~2150MHz tunable bandpass ilter by cascading low and high pass filters (저역 및 고역 통과필터 종속연결형 950~2150MHz 가변대역통과필터의 설계)

  • 신재준;구경헌
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.7
    • /
    • pp.1385-1393
    • /
    • 1997
  • In this paper, a systematic design method of brjoadband tunable bandpass filter is presented by using user defined varactor diode method. The tunable bandpass filter is constructed as the cascade connection of low pass filter and high pass filter. The designed filter shows the characteristeristics of 2.7.+-.0.2dB insertion loss and 37.1.+-.5.0dB insertion loss and 32.1.+-.2.2dB image rejection. The results of the research can be used fodr the broadband tunable filter of DBS tuner and communication instruments.

  • PDF

A Varactor-Tuned RF Tunable Bandpass Filter with Improved Passband Flatness

  • Kim, Byung-Wook;Yun, Du-Il;Yun, Sang-Won
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.2
    • /
    • pp.124-127
    • /
    • 2002
  • A RF tunable bandpass filter using dielectric resonators and varactor diodes is redesigned to improve the passband flatness. Since the tunable liters are generally of narrow bandwidth and the Q value of the varactor diode is usually very low, the passband flatness is strongly deteriorated by sizeable distortion loss. To remedy this problem, we construct modified Chebyshev type filter by use of network synthesis techniques. The key of modified Chebyshev type filter is the rearrangement of the passband poles to improve the passband flatness. To maintain the constant passband bandwidth, design techniques of input/output stage and coupling windows are also applied. Experimental results show that the passband flatness can be improved by purposed method without any additional RF amplitude equalizer.

Design of Tunable Ceramic Bandpass Filter in UHF Band (UHF대역 가변 세라믹 대역통과 여파기의 설계)

  • 김윤조;황희용;성규제;윤상원;장익수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.1
    • /
    • pp.76-83
    • /
    • 2000
  • A 2-pole tunable bandpass filter was design and fabricated using ceramic coaxial resonators and varactor diodes for UHF band. By inspection of frequency characteristics of the T-and $\pi$-type inverter equivalent circuits, we can design a two-pole tunable BPF with only two varactors. The measured data of the filter show 800 MHz-900 MHz tunable center frequency range, 4.5 dB insertion loss, 0.5 dB passband ripple and at least 15 dB return loss, which agree well with the simulated results.

  • PDF

Tunable Combline Bandpass Filter Using Cross-Coupled Stepped-Impedance Resonators with Enhanced Characteristics

  • Kim, Yoon-Hong;Cho, Young-Ho;Yun, Sang-Won
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.4
    • /
    • pp.144-147
    • /
    • 2008
  • This paper proposes a tunable combline bandpass filter with high selectivity, constant bandwidth, and good stopband performances. A filter with these characteristics is obtained by applying cross-coupling to the conventional combline bandpass filter using stepped-impedance resonators(SIRs). For high selectivity and constant bandwidth, cross-coupling is utilized and the SIR configuration is used for enhanced stopband performances. The proposed combline tunable bandpass filter with 5% of fractional bandwidth at 1.6 GHz was fabricated and tested. The measured results showed 11.6% tunability with constant bandwidth, high selectivity and enhanced stopband characteristics.

Design of an Active Tunable Bandpass Filter for Spectrum Sensing Application in the TVWS Band

  • Kim, Dong-Su;Kim, Do-Hyun;Yun, Sang-Won
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.1
    • /
    • pp.34-38
    • /
    • 2017
  • In this paper, we propose an active tunable bandpass filter (BPF) for efficient spectrum sensing in the TV White Space (TVWS) band. By designing a narrow bandwidth, it is possible to improve the sensing probability. The basic circuit configuration involves switching the PIN diode compromising capacitor bank to change the capacitance of the LC resonant circuit. To cover the whole TVWS band effectively, we add a varactor diode, and the bandwidth is set to 25-MHz. We improve the insertion loss by using the active capacitance circuit. The tunable BPF in the TVWS band with a 20-MHz interval is designed to have 11 channels with a bandwidth of 25 MHz and a low insertion loss of 1.7-2.0 dB.