• 제목/요약/키워드: tumorigenic

검색결과 126건 처리시간 0.025초

개 지방세포 유래의 중간엽 줄기세포의 종양형성시험 (Tumorigenesis Study of Canine Adipose Derived-mesenchymal Stem Cell)

  • 이은선;권은아;박정란;강병철;강경선;조명행
    • Toxicological Research
    • /
    • 제23권3호
    • /
    • pp.271-278
    • /
    • 2007
  • Several recent studies demonstrated the potential of bioengineering using stem cells in regenerative medicine. Adult mesenchymal stem cells (MSCs) have the pluripotency to differentiate into cells of mesodermal origin, i.e., bone, cartilage, adipose, and muscle cells; they, therefore, have many potential clinical applications. On the other hand, stem cells possess a self-renewal capability similar to cancer cells. For safety evaluation of MSCs, in this study, we tested tumorigenecity of canine adipose derived mesenchymal stem cells (cAD-MSCs) using Balb/c-nu mice. In this study, there were no changes in mortality, clinical signs, body weights and biochemical parameters of all animals treated. In addition, there were no significant changes between control and treated groups in autopsy findings. These results indicate that cAD-MSC has no tumorigenic potential under the condition in this study.

Clematis chinensis suppresses lipopolysaccharide-induced expressions of inducible nitric oxide synthase and cyclooxygenase-2 in mouse BV2 microglial cells

  • Chun, Hae-Jin;Lee, Choong-Yeol;Lee, Jin-Woo;Sung, Yun-Hee;Kim, Sung-Eun;Kim, Young-Sick;Shin, Mal-Soon;Kim, Chang-Ju;Lee, Hye-Jung;Kim, Dong-Hee
    • Advances in Traditional Medicine
    • /
    • 제10권3호
    • /
    • pp.214-221
    • /
    • 2010
  • Clematis chinensis is the root of Clematis chinensis OSBECK and is classified in Ranunculaceae. Clematis chinensis is a traditional medicinal herb possesses analgesic, diuretic, anti-tumorigenic, and anti-inflammatory effects. In this study, the effect of aqueous extract of Clematis chinensis against lipopolysaccharide-induced inflammation was investigated in mouse BV2 microglial cells. The aqueous extract of Clematis chinensis at the respective concentration was treated one hour before the lipopolysaccharide treatment in mouse BV2 microglial cells. From the present results, pre-treatment with the aqueous extract of Clematis chinensis suppressed prostaglandin E2 synthesis and nitric oxide production by inhibiting on the lipopolysaccharide-stimulated cyclooxygenase-2 and inducible nitric oxide synthase expressions in mouse BV2 microglial cells. The present study suggests that Clematis chinensis may offer a valuable mean of therapy for brain inflammatory diseases.

TOMM20 as a potential therapeutic target of colorectal cancer

  • Park, Sang-Hee;Lee, Ah-Reum;Choi, Keonwoo;Joung, Soyoung;Yoon, Jong-Bok;Kim, Sungjoo
    • BMB Reports
    • /
    • 제52권12호
    • /
    • pp.712-717
    • /
    • 2019
  • Translocase of outer mitochondrial membrane 20 (TOMM20) plays an essential role as a receptor for proteins targeted to mitochondria. TOMM20 was shown to be overexpressed in various cancers. However, the oncological function and therapeutic potential for TOMM20 in cancer remains largely unexplored. The purpose of this study was to elucidate the underlying molecular mechanism of TOMM20's contribution to tumorigenesis and to explore the possibility of its therapeutic potential using colorectal cancer as a model. The results show that TOMM20 overexpression resulted in an increase in cell proliferation, migration, and invasion of colorectal cancer (CRC) cells, while siRNA-mediated inhibition of TOMM20 resulted in significant decreases in cell proliferation, migration, and invasion. TOMM20 expression directly impacted the mitochondrial function including ATP production and maintenance of membrane potential, which contributed to tumorigenic cellular activities including regulation of S phase cell cycle and apoptosis. TOMM20 was overexpressed in CRC compared to the normal tissues and increased expression of TOMM20 to be associated with malignant characteristics including a higher number of lymph nodes and perineural invasion in CRC. Notably, knockdown of TOMM20 in the xenograft mouse model resulted in a significant reduction of tumor growth. This is the first report demonstrating a relationship between TOMM20 and tumorigenesis in colorectal cancer and providing promising evidence for the potential for TOMM20 to serve as a new therapeutic target of colorectal cancer.

miR-30a Regulates the Expression of CAGE and p53 and Regulates the Response to Anti-Cancer Drugs

  • Park, Deokbum;Kim, Hyuna;Kim, Youngmi;Jeoung, Dooil
    • Molecules and Cells
    • /
    • 제39권4호
    • /
    • pp.299-309
    • /
    • 2016
  • We have previously reported the role of miR-217 in anti-cancer drug-resistance. miRNA array and miRNA hybridization analysis predicted miR-30a-3p as a target of miR-217. miR-30a-3p and miR-217 formed a negative feedback loop and regulated the expression of each other. Ago1 immunoprecipitation and co-localization analysis revealed a possible interaction between miR-30a-3p and miR-217. miR-30a-3p conferred resistance to anti-cancer drugs and enhanced the invasion, migration, angiogenic, tumorigenic, and metastatic potential of cancer cells in CAGE-dependent manner. CAGE increased the expression of miR-30a-3p by binding to the promoter sequences of miR-30a-3p, suggesting a positive feedback loop between CAGE and miR-30a-3p. miR-30a-3p decreased the expression of p53, which showed the binding to the promoter sequences of miR-30a-3p and CAGE in anti-cancer drug-sensitive cancer cells. Luciferase activity assays showed that p53 serves as a target of miR-30a. Thus, the miR-30a-3p-CAGE-p53 feedback loop serves as a target for overcoming resistance to anti-cancer drugs.

Overexpression of microRNA-612 Restrains the Growth, Invasion, and Tumorigenesis of Melanoma Cells by Targeting Espin

  • Zhu, Ying;Zhang, Hao-liang;Wang, Qi-ying;Chen, Min-jing;Liu, Lin-bo
    • Molecules and Cells
    • /
    • 제41권2호
    • /
    • pp.119-126
    • /
    • 2018
  • microRNA (miR)-612 shows anticancer activity in several types of cancers, yet its function in melanoma is still unclear. This study was undertaken to investigate the expression of miR-612 and its biological relevance in melanoma cell growth, invasion, and tumorigenesis. The expression and prognostic significance of miR-612 in melanoma were examined. The effects of miR-612 overexpression on cell proliferation, colony formation, tumorigenesis, and invasion were determined. Rescue experiments were conducted to identify the functional target gene(s) of miR-612. miR-612 was significantly downregulated in melanoma tissues compared to adjacent normal tissues. Low miR-612 expression was significantly associated with melanoma thickness, lymph node metastasis, and shorter overall, and disease-free survival of patients. Overexpression of miR-612 significantly decreased cell proliferation, colony formation, and invasion of SK-MEL-28 and A375 melanoma cells. In vivo tumorigenic studies confirmed that miR-612 overexpression retarded the growth of A375 xenograft tumors, which was coupled with a decline in the percentage of Ki-67-positive proliferating cells. Mechanistically, miR-612 targeted Espin in melanoma cells. Overexpression of Espin counteracted the suppressive effects of miR-612 on melanoma cell proliferation, invasion, and tumorigenesis. A significant inverse correlation (r = -0.376, P = 0.018) was observed between miR-612 and Espin protein expression in melanoma tissues. In addition, overexpression of miR-612 and knockdown of Espin significantly increased the sensitivity of melanoma cells to doxorubicin. Collectively, miR-612 suppresses the aggressive phenotype of melanoma cells through downregulation of Espin. Delivery of miR-612 may represent a novel therapeutic strategy against melanoma.

Transformation of Mouse Liver Cells by Methylcholanthrene Leads to Phenotypic Changes Associated with Epithelial-mesenchymal Transition

  • Oh, Jiyun;Kwak, Jae-Hwan;Kwon, Do-Young;Kim, A-Young;Oh, Dal-Seok;Je, Nam Kyung;Lee, Jaewon;Jung, Young-Suk
    • Toxicological Research
    • /
    • 제30권4호
    • /
    • pp.261-266
    • /
    • 2014
  • Environmental pollutants such as polycyclic aromatic hydrocarbons (PAHs) have been implicated in cancer development and progression. However, the effects of PAHs on carcinogenesis are still poorly understood. Here, we characterized a mouse cancer cell line BNL 1ME A. 7R.1 (1MEA) derived by transformation of non-tumorigenic liver cell line BNL CL.2 (BNL) using 3-methylcholanthrene (3MC), a carcinogenic PAH. RT-PCR and immunoblot analysis were used to determine the expression level of mRNA and proteins, respectively. To determine functionality, cell motility was assessed in vitro using a transwell migration assay. Both mRNA and protein levels of E-cadherin were significantly decreased in 1MEA cells in comparison with BNL cells. While the expression levels of mesenchymal markers and related transcription factors were enhanced in 1MEA cells, which could lead to increase in cell motility. Indeed, we found that 7-day exposure of BNL cells to 3-MC reduced the level of the adhesion molecule and epithelial marker E-cadherin and increased reciprocally the level of the mesenchymal marker vimentin in a dose-dependent manner. Taken together, these results indicate that the process of epithelial-mesenchymal transition (EMT) may be activated during premalignant transformation induced by 3-MC. A mechanism study to elucidate the relation between 3-MC exposure and EMT is underway in our laboratory.

프로폴리스가 X-선에 노출된 마우스 정소에 미치는 방사선 방어 효과 (Radioprotective Effects of Propolis on the Mouse Testis Exposed to X-ray.)

  • 지태정;김종식;정형진;서을원
    • 생명과학회지
    • /
    • 제17권5호
    • /
    • pp.664-670
    • /
    • 2007
  • 프로폴리스는 꿀벌에 의해 생산되는 천연물질로서, 항미생물, 항산화, 항암 활성이 있는 것으로 알려져 있다. 그러나 프로폴리스에 의한 방사선 방어효과에 대한 특성은 잘 연구되지 않았다. 마우스 정소조직을 대상으로 프로폴리스에 의한 방사선 방어효과를 연구하기 위하여, 프로폴리스를 섭식시키거나 복강 투여한 후 각각 방사선을 조사한 후, 마우스의 정소조직을 광학현미경과 전자현미경을 통해 관찰하였다. 그 결과 방사선에 의해 유도된 세포의 변형이 프로폴리스에 의해 회복됨을 알 수 있었다. 또한 이러한 방사선 회복 효과의 분자기전을 이해하고자 DNA microarray 실험을 수행하였다. 그 결과 방사선만 조사한 마우스에 비해 방사선과 프로폴리스를 동시에 처리한 마우스의 정소에서 2배 이상 증가되는 유전자 65개를 선별하였고, 반대로 2배 이상 감소되는 유전자 진4개를 선별하였다. 이중에서 각각의 유전자군에서 2개의 유전자를 선별하여 RT-PCR을 수행하여 마이크로어레이 결과를 검증하였다. 이러한 결과들은 마우스 모델에서 프로폴리스에 의한 방사선 방어효과의 분자기전을 이해하는데 도움이 될 것으로 기대된다.

Classifying the Linkage between Adipose Tissue Inflammation and Tumor Growth through Cancer-Associated Adipocytes

  • Song, Yae Chan;Lee, Seung Eon;Jin, Young;Park, Hyun Woo;Chun, Kyung-Hee;Lee, Han-Woong
    • Molecules and Cells
    • /
    • 제43권9호
    • /
    • pp.763-773
    • /
    • 2020
  • Recently, tumor microenvironment (TME) and its stromal constituents have provided profound insights into understanding alterations in tumor behavior. After each identification regarding the unique roles of TME compartments, non-malignant stromal cells are found to provide a sufficient tumorigenic niche for cancer cells. Of these TME constituents, adipocytes represent a dynamic population mediating endocrine effects to facilitate the crosstalk between cancer cells and distant organs, as well as the interplay with nearby tumor cells. To date, the prevalence of obesity has emphasized the significance of metabolic homeostasis along with adipose tissue (AT) inflammation, cancer incidence, and multiple pathological disorders. In this review, we summarized distinct characteristics of hypertrophic adipocytes and cancer to highlight the importance of an individual's metabolic health during cancer therapy. As AT undergoes inflammatory alterations inducing tissue remodeling, immune cell infiltration, and vascularization, these features directly influence the TME by favoring tumor progression. A comparison between inflammatory AT and progressing cancer could potentially provide crucial insights into delineating the complex communication network between uncontrolled hyperplastic tumors and their microenvironmental components. In turn, the comparison will unravel the underlying properties of dynamic tumor behavior, advocating possible therapeutic targets within TME constituents.

레트로바이러스를 이용한 Tissue Inhibitor of Metalloproteinase-2 유전자 발현이 대장암 세포의 전이 및 종양형성에 미치는 영향 (Anti-tumorigenic and Invasive Activity of Colon Cancer Cells Transfected with the Retroviral Vector Encoding Tissue Inhibitor of Metalloproteinase-2)

  • 오일웅;정자영;장석기;이수해;김연수;손여원
    • 약학회지
    • /
    • 제48권3호
    • /
    • pp.189-196
    • /
    • 2004
  • Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) playa key role in tumor invasion and metastasis. As an inhibitor of MMP-2, TIMP-2 is known to block both the invasive and metastatic behavior of cancer cells, and decrease tumor growth activity. We performed this study to investigate the effects of TIMP-2 over-expression induced by retroviral mediated gene transfer in vitro and in vivo. The human colon cancer cell line SW480 was transfected with the retroviral vector encoding TIMP-2. The effects of TIMP-2 over-expression were analyzed by invasion assay and gelatinase activity test in colon cancer cells and tumorigencity in nude mice. In evaluation of the transfection efficiency of the retroviral vector encoding TIMP-2 in colon cancer cells, we confirmed up-regulation of TIMP-2 expression dependent on the time of cell culture. In addition, inhibition of MMP-2 expression in SW480/TIMP-2 was shown by gelatin zymography. In the in vitro invasion assay SW480/TIMP-2 inhibited the invasiveness on matrigel coated with collagen. To determine whether TIMP-2 can modulate in vivo tumorigenicity and metastasis, SW480/TIMP-2 cells were injected subcutaneously in nude mice. The tumor mass formation of SW480/TIMP-2 cells in nude mice was markedly decreased compared to nontransfected cancer cells. These results showed that colon cancer cells transfected with the retroviral vector encoding TIMP-2 inhibits the invasiveness in vitro and tumorigenicity in vivo.

TRIB2 Stimulates Cancer Stem-Like Properties through Activating the AKT-GSK3β-β-Catenin Signaling Axis

  • Kim, Dae Kyoung;Kim, Yu Na;Kim, Ye Eun;Lee, Seo Yul;Shin, Min Joo;Do, Eun Kyoung;Choi, Kyung-Un;Kim, Seung-Chul;Kim, Ki-Hyung;Suh, Dong-Soo;Song, Parkyong;Kim, Jae Ho
    • Molecules and Cells
    • /
    • 제44권7호
    • /
    • pp.481-492
    • /
    • 2021
  • Tribbles homolog 2 (TRIB2) is implicated in tumorigenesis and drug resistance in various types of cancers. However, the role of TRIB2 in the regulation of tumorigenesis and drug resistance of cancer stem cells (CSCs) is still elusive. In the present study, we showed increased expression of TRIB2 in spheroid-forming and aldehyde dehydrogenase-positive CSC populations of A2780 epithelial ovarian cancer cells. Short hairpin RNA-mediated silencing of TRIB2 expression attenuates the spheroid-forming, migratory, tumorigenic, and drug-resistant properties of A2780 cells, whereas overexpression of TRIB2 increases the CSC-like characteristics. TRIB2 overexpression induced GSK3β inactivation by augmenting AKT-dependent phosphorylation of GSK3β at Ser9, followed by increasing β-catenin level via reducing the GSK3β-mediated phosphorylation of β-catenin. Treatment of TRIB2-ovexpressed A2780 cells with the phosphoinositide3-kinase inhibitor LY294002 abrogated TRIB2-stimulated proliferation, migration, drug resistance of A2780 cells. These results suggest a critical role for TRIB2 in the regulation of CSC-like properties by increasing the stability of β-catenin protein via the AKT-GSK3β-dependent pathways.