Browse > Article
http://dx.doi.org/10.14348/molcells.2021.0030

TRIB2 Stimulates Cancer Stem-Like Properties through Activating the AKT-GSK3β-β-Catenin Signaling Axis  

Kim, Dae Kyoung (Department of Physiology, School of Medicine, Pusan National University)
Kim, Yu Na (Department of Physiology, School of Medicine, Pusan National University)
Kim, Ye Eun (Department of Physiology, School of Medicine, Pusan National University)
Lee, Seo Yul (Department of Physiology, School of Medicine, Pusan National University)
Shin, Min Joo (Department of Physiology, School of Medicine, Pusan National University)
Do, Eun Kyoung (Department of Physiology, School of Medicine, Pusan National University)
Choi, Kyung-Un (Department of Pathology, School of Medicine, Pusan National University)
Kim, Seung-Chul (Department of Obstetrics and Gynecology, School of Medicine, Pusan National University)
Kim, Ki-Hyung (Department of Obstetrics and Gynecology, School of Medicine, Pusan National University)
Suh, Dong-Soo (Department of Obstetrics and Gynecology, School of Medicine, Pusan National University)
Song, Parkyong (Department of Convergence Medicine, School of Medicine, Pusan National University)
Kim, Jae Ho (Department of Physiology, School of Medicine, Pusan National University)
Abstract
Tribbles homolog 2 (TRIB2) is implicated in tumorigenesis and drug resistance in various types of cancers. However, the role of TRIB2 in the regulation of tumorigenesis and drug resistance of cancer stem cells (CSCs) is still elusive. In the present study, we showed increased expression of TRIB2 in spheroid-forming and aldehyde dehydrogenase-positive CSC populations of A2780 epithelial ovarian cancer cells. Short hairpin RNA-mediated silencing of TRIB2 expression attenuates the spheroid-forming, migratory, tumorigenic, and drug-resistant properties of A2780 cells, whereas overexpression of TRIB2 increases the CSC-like characteristics. TRIB2 overexpression induced GSK3β inactivation by augmenting AKT-dependent phosphorylation of GSK3β at Ser9, followed by increasing β-catenin level via reducing the GSK3β-mediated phosphorylation of β-catenin. Treatment of TRIB2-ovexpressed A2780 cells with the phosphoinositide3-kinase inhibitor LY294002 abrogated TRIB2-stimulated proliferation, migration, drug resistance of A2780 cells. These results suggest a critical role for TRIB2 in the regulation of CSC-like properties by increasing the stability of β-catenin protein via the AKT-GSK3β-dependent pathways.
Keywords
cancer stem cells; chemoresistance; ovarian cancer; stemness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kritsch, D., Hoffmann, F., Steinbach, D., Jansen, L., Mary Photini, S., Gajda, M., Mosig, A.S., Sonnemann, J., Peters, S., Melnikova, M., et al. (2017). Tribbles 2 mediates cisplatin sensitivity and DNA damage response in epithelial ovarian cancer. Int. J. Cancer 141, 1600-1614.   DOI
2 Liao, J., Qian, F., Tchabo, N., Mhawech-Fauceglia, P., Beck, A., Qian, Z., Wang, X., Huss, W.J., Lele, S.B., Morrison, C.D., et al. (2014). Ovarian cancer spheroid cells with stem cell-like properties contribute to tumor generation, metastasis and chemotherapy resistance through hypoxiaresistant metabolism. PLoS One 9, e84941.   DOI
3 Lohan, F. and Keeshan, K. (2013). The functionally diverse roles of tribbles. Biochem. Soc. Trans. 41, 1096-1100.   DOI
4 Seo, E.J., Kim, D.K., Jang, I.H., Choi, E.J., Shin, S.H., Lee, S.I., Kwon, S.M., Kim, K.H., Suh, D.S., and Kim, J.H. (2016). Hypoxia-NOTCH1-SOX2 signaling is important for maintaining cancer stem cells in ovarian cancer. Oncotarget 7, 55624-55638.   DOI
5 Van Camp, J.K., Beckers, S., Zegers, D., and Van Hul, W. (2014). Wnt signaling and the control of human stem cell fate. Stem Cell Rev. Rep. 10, 207-229.   DOI
6 Xu, S., Tong, M., Huang, J., Zhang, Y., Qiao, Y., Weng, W., Liu, W., Wang, J., and Sun, F. (2014). TRIB2 inhibits Wnt/beta-Catenin/TCF4 signaling through its associated ubiquitin E3 ligases, beta-TrCP, COP1 and Smurf1, in liver cancer cells. FEBS Lett. 588, 4334-4341.   DOI
7 Zyla, R.E., Olkhov-Mitsel, E., Amemiya, Y., Bassiouny, D., Seth, A., Djordjevic, B., Nofech-Mozes, S., and Parra-Herran, C. (2021). CTNNB1 mutations and aberrant β-catenin expression in ovarian endometrioid carcinoma: correlation with patient outcome. Am. J. Surg. Pathol. 45, 68-76.   DOI
8 Arend, R.C., Londono-Joshi, A.I., Straughn, J.M., Jr., and Buchsbaum, D.J. (2013). The Wnt/β-catenin pathway in ovarian cancer: a review. Gynecol. Oncol. 131, 772-779.   DOI
9 Al-Alem, L.F., Pandya, U.M., Baker, A.T., Bellio, C., Zarrella, B.D., Clark, J., DiGloria, C.M., and Rueda, B.R. (2019). Ovarian cancer stem cells: what progress have we made? Int. J. Biochem. Cell Biol. 107, 92-103.   DOI
10 Anastas, J.N. and Moon, R.T. (2013). WNT signalling pathways as therapeutic targets in cancer. Nat. Rev. Cancer 13, 11-26.   DOI
11 Cancer Genome Atlas Research Network (2011). Integrated genomic analyses of ovarian carcinoma. Nature 474, 609-615.   DOI
12 Bamias, A., Sotiropoulou, M., Zagouri, F., Trachana, P., Sakellariou, K., Kostouros, E., Kakoyianni, K., Rodolakis, A., Vlahos, G., Haidopoulos, D., et al. (2012). Prognostic evaluation of tumour type and other histopathological characteristics in advanced epithelial ovarian cancer, treated with surgery and paclitaxel/carboplatin chemotherapy: cell type is the most useful prognostic factor. Eur. J. Cancer 48, 1476-1483.   DOI
13 Cannistra, S.A. (2004). Cancer of the ovary. N. Engl. J. Med. 351, 2519-2529.   DOI
14 Cao, Z., Livas, T., and Kyprianou, N. (2016). Anoikis and EMT: lethal "liaisons" during cancer progression. Crit. Rev. Oncog. 21, 155-168.   DOI
15 Cervello, M., Augello, G., Cusimano, A., Emma, M.R., Balasus, D., Azzolina, A., McCubrey, J.A., and Montalto, G. (2017). Pivotal roles of glycogen synthase-3 in hepatocellular carcinoma. Adv. Biol. Regul. 65, 59-76.   DOI
16 Chau, W.K., Ip, C.K., Mak, A.S., Lai, H.C., and Wong, A.S. (2013). c-Kit mediates chemoresistance and tumor-initiating capacity of ovarian cancer cells through activation of Wnt/β-catenin-ATP-binding cassette G2 signaling. Oncogene 32, 2767-2781.   DOI
17 Sweeney, K., Cameron, E.R., and Blyth, K. (2020). Complex interplay between the RUNX transcription factors and Wnt/beta-catenin pathway in cancer: a tango in the night. Mol. Cells 43, 188-197.   DOI
18 Jacob, F., Ukegjini, K., Nixdorf, S., Ford, C.E., Olivier, J., Caduff, R., Scurry, J.P., Guertler, R., Hornung, D., Mueller, R., et al. (2012). Loss of secreted frizzled-related protein 4 correlates with an aggressive phenotype and predicts poor outcome in ovarian cancer patients. PLoS One 7, e31885.   DOI
19 Grandinetti, K.B., Stevens, T.A., Ha, S., Salamone, R.J., Walker, J.R., Zhang, J., Agarwalla, S., Tenen, D.G., Peters, E.C., and Reddy, V.A. (2011). Overexpression of TRIB2 in human lung cancers contributes to tumorigenesis through downregulation of C/EBPalpha. Oncogene 30, 3328-3335.   DOI
20 Hill, R., Madureira, P.A., Ferreira, B., Baptista, I., Machado, S., Colaco, L., Dos Santos, M., Liu, N., Dopazo, A., Ugurel, S., et al. (2017). TRIB2 confers resistance to anti-cancer therapy by activating the serine/threonine protein kinase AKT. Nat. Commun. 8, 14687.   DOI
21 Singh, A. and Settleman, J. (2010). EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29, 4741-4751.   DOI
22 Loessner, D., Stok, K.S., Lutolf, M.P., Hutmacher, D.W., Clements, J.A., and Rizzi, S.C. (2010). Bioengineered 3D platform to explore cellECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials 31, 8494-8506.   DOI
23 Choi, E.J., Seo, E.J., Kim, D.K., Lee, S.I., Kwon, Y.W., Jang, I.H., Kim, K.H., Suh, D.S., and Kim, J.H. (2016). FOXP1 functions as an oncogene in promoting cancer stem cell-like characteristics in ovarian cancer cells. Oncotarget 7, 3506-3519.   DOI
24 Clevers, H. (2006). Wnt/beta-catenin signaling in development and disease. Cell 127, 469-480.   DOI
25 Hua, F., Shang, S., Yang, Y.W., Zhang, H.Z., Xu, T.L., Yu, J.J., Zhou, D.D., Cui, B., Li, K., Lv, X.X., et al. (2019). TRIB3 interacts with beta-catenin and TCF4 to increase stem cell features of colorectal cancer stem cells and tumorigenesis. Gastroenterology 156, 708-721.e15.   DOI
26 Petrik, J.J. (2013). Challenges in experimental modeling of ovarian cancerogenesis. Methods Mol. Biol. 1049, 371-376.   DOI
27 Salazar, M., Lorente, M., Garcia-Taboada, E., Perez Gomez, E., Davila, D., Zuniga-Garcia, P., Maria Flores, J., Rodriguez, A., Hegedus, Z., MosenAnsorena, D., et al. (2015). Loss of Tribbles pseudokinase-3 promotes Aktdriven tumorigenesis via FOXO inactivation. Cell Death Differ. 22, 131-144.   DOI
28 Cross, D.A., Alessi, D.R., Cohen, P., Andjelkovich, M., and Hemmings, B.A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785-789.   DOI
29 Dion, L., Carton, I., Jaillard, S., Nyangoh Timoh, K., Henno, S., Sardain, H., Foucher, F., Leveque, J., de la Motte Rouge, T., Brousse, S., et al. (2020). The landscape and therapeutic implications of molecular profiles in epithelial ovarian cancer. J. Clin. Med. 9, 2239.   DOI
30 Conic, I., Dimov, I., Tasic-Dimov, D., Djordjevic, B., and Stefanovic, V. (2011). Ovarian epithelial cancer stem cells. ScientificWorldJournal 11, 1243-1269.   DOI
31 Qu, J., Liu, B., Li, B., Du, G., Li, Y., Wang, J., He, L., and Wan, X. (2019). TRIB3 suppresses proliferation and invasion and promotes apoptosis of endometrial cancer cells by regulating the AKT signaling pathway. Onco Targets Ther. 12, 2235-2245.   DOI
32 Zhang, X., Zhong, N., Li, X., and Chen, M.B. (2019). TRIB3 promotes lung cancer progression by activating beta-catenin signaling. Eur. J. Pharmacol. 863, 172697.   DOI
33 Erazo, T., Lorente, M., Lopez-Plana, A., Munoz-Guardiola, P., FernandezNogueira, P., Garcia-Martinez, J.A., Bragado, P., Fuster, G., Salazar, M., Espadaler, J., et al. (2016). The new antitumor drug ABTL0812 inhibits the Akt/mTORC1 axis by upregulating Tribbles-3 pseudokinase. Clin. Cancer Res. 22, 2508-2519.   DOI
34 Eyers, P.A., Keeshan, K., and Kannan, N. (2017). Tribbles in the 21st century: the evolving roles of Tribbles pseudokinases in biology and disease. Trends Cell Biol. 27, 284-298.   DOI
35 Friedman, A.D. (2015). C/EBPalpha in normal and malignant myelopoiesis. Int. J. Hematol. 101, 330-341.   DOI
36 Geiger, T.R. and Peeper, D.S. (2009). Metastasis mechanisms. Biochim. Biophys. Acta 1796, 293-308.
37 Marcato, P., Dean, C.A., Giacomantonio, C.A., and Lee, P.W. (2011). Aldehyde dehydrogenase: its role as a cancer stem cell marker comes down to the specific isoform. Cell Cycle 10, 1378-1384.   DOI
38 Orecchioni, S. and Bertolini, F. (2016). Characterization of cancer stem cells. Methods Mol. Biol. 1464, 49-62.   DOI
39 Salome, M., Campos, J., and Keeshan, K. (2015). TRIB2 and the ubiquitin proteasome system in cancer. Biochem. Soc. Trans. 43, 1089-1094.   DOI
40 Wang, J., Park, J.S., Wei, Y., Rajurkar, M., Cotton, J.L., Fan, Q., Lewis, B.C., Ji, H., and Mao, J. (2013). TRIB2 acts downstream of Wnt/TCF in liver cancer cells to regulate YAP and C/EBPalpha function. Mol. Cell 51, 211-225.   DOI
41 Wang, Y., Hewitt, S.M., Liu, S., Zhou, X., Zhu, H., Zhou, C., Zhang, G., Quan, L., Bai, J., and Xu, N. (2006). Tissue microarray analysis of human FRAT1 expression and its correlation with the subcellular localisation of betacatenin in ovarian tumours. Br. J. Cancer 94, 686-691.   DOI
42 Yokoyama, T. and Nakamura, T. (2011). Tribbles in disease: signaling pathways important for cellular function and neoplastic transformation. Cancer Sci. 102, 1115-1122.   DOI
43 Zhang, S., Jing, Y., Zhang, M., Zhang, Z., Ma, P., Peng, H., Shi, K., Gao, W.Q., and Zhuang, G. (2015). Stroma-associated master regulators of molecular subtypes predict patient prognosis in ovarian cancer. Sci. Rep. 5, 16066.   DOI
44 Lamouille, S., Xu, J., and Derynck, R. (2014). Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178-196.   DOI
45 Holland, J.D., Klaus, A., Garratt, A.N., and Birchmeier, W. (2013). Wnt signaling in stem and cancer stem cells. Curr. Opin. Cell Biol. 25, 254-264.   DOI
46 Jones, M.R., Kamara, D., Karlan, B.Y., Pharoah, P.D.P., and Gayther, S.A. (2017). Genetic epidemiology of ovarian cancer and prospects for polygenic risk prediction. Gynecol. Oncol. 147, 705-713.   DOI
47 Keeshan, K., He, Y., Wouters, B.J., Shestova, O., Xu, L., Sai, H., Rodriguez, C.G., Maillard, I., Tobias, J.W., Valk, P., et al. (2006). Tribbles homolog 2 inactivates C/EBPalpha and causes acute myelogenous leukemia. Cancer Cell 10, 401-411.   DOI
48 Liang, Y., Yu, D., Perez-Soler, R., Klostergaard, J., and Zou, Y. (2017). TRIB2 contributes to cisplatin resistance in small cell lung cancer. Oncotarget 8, 109596-109608.   DOI
49 Link, W. (2015). Tribbles breaking bad: TRIB2 suppresses FOXO and acts as an oncogenic protein in melanoma. Biochem. Soc. Trans. 43, 1085-1088.   DOI
50 Do, E.K., Park, J.K., Cheon, H.C., Kwon, Y.W., Heo, S.C., Choi, E.J., Seo, J.K., Jang, I.H., Lee, S.C., and Kim, J.H. (2017). Trib2 regulates the pluripotency of embryonic stem cells and enhances reprogramming efficiency. Exp. Mol. Med. 49, e401.   DOI
51 Nusse, R. and Clevers, H. (2017). Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell 169, 985-999.   DOI
52 Lupia, M. and Cavallaro, U. (2017). Ovarian cancer stem cells: still an elusive entity? Mol. Cancer 16, 64.   DOI
53 Ma, X., Zhou, X., Qu, H., Ma, Y., Yue, Z., Shang, W., Wang, P., Xie, S., Li, Y., and Sun, Y. (2018). TRIB2 knockdown as a regulator of chemotherapy resistance and proliferation via the ERK/STAT3 signaling pathway in human chronic myelogenous leukemia K562/ADM cells. Oncol. Rep. 39, 1910-1918.
54 Naora, H. and Montell, D.J. (2005). Ovarian cancer metastasis: integrating insights from disparate model organisms. Nat. Rev. Cancer 5, 355-366.   DOI
55 Peng, S., Maihle, N.J., and Huang, Y. (2010). Pluripotency factors Lin28 and Oct4 identify a sub-population of stem cell-like cells in ovarian cancer. Oncogene 29, 2153-2159.   DOI
56 Sakai, S., Miyajima, C., Uchida, C., Itoh, Y., Hayashi, H., and Inoue, Y. (2016). Tribbles-related protein family members as regulators or substrates of the ubiquitin-proteasome system in cancer development. Curr. Cancer Drug Targets 16, 147-156.   DOI
57 Salome, M., Magee, A., Yalla, K., Chaudhury, S., Sarrou, E., Carmody, R.J., and Keeshan, K. (2018). A Trib2-p38 axis controls myeloid leukaemia cell cycle and stress response signalling. Cell Death Dis. 9, 443.   DOI
58 Sato, R., Semba, T., Saya, H., and Arima, Y. (2016). Concise review: stem cells and epithelial-mesenchymal transition in cancer: biological implications and therapeutic targets. Stem Cells 34, 1997-2007.   DOI