• 제목/요약/키워드: tumor protein 53

검색결과 260건 처리시간 0.034초

청각과 김에서 추출한 당단백질의 Sarcoma-180에 대한 항암효과 및 면역활성 (Antitumor Effect and Immunology Activity of Seaweeds toward Sarcoma-180)

  • 조경자;이영숙;류병호
    • 한국수산과학회지
    • /
    • 제23권5호
    • /
    • pp.345-352
    • /
    • 1990
  • 해조류 중 청각과 김에서 당단백질을 추출하여 화학성분의 조성을 규명하고 sarcoma-180 cell을 이용하여 항암 및 면역활성을 검토하였다. 해조류에서 추출한 당단백질 중 당의 함량은 청각과 김에서 각각 $62.26\%$$65.78\%$이였고 이를 구성하는 단당류는 fructose의 함량이 가장 많았다. 단백질의 함량은 청각 $6.07\%$, 김은 $2.46\%$이였으며, 이를 구성하는 주요 아미노산은 aspartic acid, glutamic acid, glycine 및 cysteine이였다. 항암 효과중 고형암 성장 저지 효과는 청각의 경우 50mg/kg을 투석 하였을때 $53.30\%$로 가장 높은 항암효과를 나타내었고, 수명 연장 효과는 김의 50mg/kg인 경우가 $17.35\%$로 가장 높은 수명 연장율을 보였다. 면역기능에 미치는 영향 중 백혈구수는 청각의 경우가 $65.11\%$로 최고로 증가하였고, 시간이 경과함에 따라 점점 감소하는 경향을 보였으며, 총 복강 세포수도 대조군에 비해 시료투여군이 현저한 증가를 나타내었다. 면역 관련 장기의 무게도 시료투여에 의하여 증가함을 볼 수 있었다. 혈액의 생화학적 성분분석은 대조군과 약물 투여군이 비슷한 수준으로 나타났다. 이는 정상적인 마우스에서는 생체의 항상성유지 기능을 초원하지 않고 어떤 이상 반응도 보이지 않았다.

  • PDF

황금 에탄올 추출물에 의한 인간 신장암 세포주 Caki-1의 G2/M arrest 유발 (Induction of Cell Cycle Arrest at G2/M phase by Ethanol Extract of Scutellaria baicalensis in Human Renal Cell Carcinoma Caki-1 Cells)

  • 박동일;정진우;박철;홍수현;신순식;최성현;최영현
    • 대한한의학방제학회지
    • /
    • 제23권2호
    • /
    • pp.199-208
    • /
    • 2015
  • Objectives : In the present study, we investigated the effects of ethanol extract of Scutellaria baicalensis (EESB) on the progression of cell cycle in human renal cell carcinoma Caki-1 cells. Methods : The effects of EESB on cell growth and apoptosis induction were evaluated by trypan blue dye exclusion assay and flow cytometry, respectively. The mRNA and protein levels were determined by Western blot analysis and reverse transcription-polymerase chain reaction, respectively. Results : It was found that EESB treatment on Caki-1 cells resulted in a dose-dependent inhibition of cell growth and induced apoptotic cell death as detected by Annexin V-FITC staining. The flow cytometric analysis indicated that EESB resulted in G2/M arrest in cell cycle progression which was associated with the down-regulation of cyclin A expression. Our results also revealed that treatment with EESB increased the mRNA and proteins expression of tumor suppressor p53 and cyclin-dependent kinase (Cdk) inhibitor p21(WAF1/CIP1), without any noticeable changes in cyclin B1, Cdk2 and Cdc2. In addition, the incubation of cells with EESB resulted in a significant increase in the binding of p21 and Cdk2 and Cdc2. These findings suggest that EESB-induced G2/M arrest and apoptosis in Caki-1 cells is mediated through the p53-mediated upregulation of Cdk inhibitor p21. Conclusions : Taken together, these findings suggest that EESB may be a potential chemotherapeutic agent and further studies will be needed to identify the biological active compounds that confer the anti-cancer activity of S. baicalensis.

Cariporide Enhances the DNA Damage and Apoptosis in Acid-tolerable Malignant Mesothelioma H-2452 Cells

  • Lee, Yoon-Jin;Bae, Jin-Ho;Kim, Soo-A;Kim, Sung-Ho;Woo, Kee-Min;Nam, Hae-Seon;Cho, Moon-Kyun;Lee, Sang-Han
    • Molecules and Cells
    • /
    • 제40권8호
    • /
    • pp.567-576
    • /
    • 2017
  • The $Na^+/H^+$ exchanger is responsible for maintaining the acidic tumor microenvironment through its promotion of the reabsorption of extracellular $Na^+$ and the extrusion of intracellular $H^+$. The resultant increase in the extracellular acidity contributes to the chemoresistance of malignant tumors. In this study, the chemosensitizing effects of cariporide, a potent $Na^+/H^+-exchange$ inhibitor, were evaluated in human malignant mesothelioma H-2452 cells preadapted with lactic acid. A higher basal level of phosphorylated (p)-AKT protein was found in the acid-tolerable H-2452AcT cells compared with their parental acid-sensitive H-2452 cells. When introduced in H-2452AcT cells with a concentration that shows only a slight toxicity in H-2452 cells, cariporide exhibited growth-suppressive and apoptosis-promoting activities, as demonstrated by an increase in the cells with pyknotic and fragmented nuclei, annexin V-PE(+) staining, a $sub-G_0/G_1$ peak, and a $G_2/M$ phase-transition delay in the cell cycle. Preceding these changes, a cariporide-induced p-AKT down-regulation, a p53 up-regulation, an ROS accumulation, and the depolarization of the mitochondrial-membrane potential were observed. A pretreatment with the phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002 markedly augmented the DNA damage caused by the cariporide, as indicated by a much greater extent of comet tails and a tail moment with increased levels of the p-histone H2A.X, $p-ATM^{Ser1981}$, $p-ATR^{Ser428}$, $p-CHK1^{Ser345}$, and $p-CHK2^{Thr68}$, as well as a series of pro-apoptotic events. The data suggest that an inhibition of the PI3K/AKT signaling is necessary to enhance the cytotoxicity toward the acidtolerable H-2452AcT cells, and it underlines the significance of proton-pump targeting as a potential therapeutic strategy to overcome the acidic-microenvironment-associated chemotherapeutic resistance.

Gaucher병에서 resveratrol의 세포주기 조절자 p21을 통한 세포보호 효과 연구 (Resveratrol Upregulates p21, Cell Cycle Regulator, in Gaucher Disease Cells)

  • 김동현;허태회;김준범;김성조
    • 생명과학회지
    • /
    • 제20권8호
    • /
    • pp.1281-1286
    • /
    • 2010
  • 고셔병은 세포내의 글루코세레브로시데이즈의 결핍으로 인하여 리소좀 내의 글루코세레브로사이드가 분해되지 못하고 축적되는 질환으로 알려져 있으며, 유형의 종류에 따라 신경퇴행성 질환으로 나타나는 것으로 보고되어 있으나 아직까지 정확한 기전이 밝혀져 있지 않다. 본 논문에서는 항산화 효과 및 신경보호 효과가 있는 것으로 알려진 레스베라트롤을 고셔병 환자의 fibroblast 세포에 투여하여 세포 생존율 변화 여부 및 세포주기 조절에 관하여 분자 생물학적 기전을 알아보고자 하였다. 고셔병 세포의 p21의 mRNA 발현 수준과 단백질 발현 양상을 확인한 결과 mRNA 상의 정량적 차이는 관찰되지 않았으나 단백질 발현수준은 레스베라트롤의 농도가 높아짐에 따라 증가 되는 것을 확인하였다. 또한 세포사멸의 표지 인자 단백질로 알려진 PARP의 변화양상을 확인한 결과 레스베라트롤의 농도가 높아짐에 따라 감소하는 것을 확인 할 수 있었다. 이를 통해 폴리페놀계 천연물인 레스베라트롤이 고셔병에서 세포 손상을 치유하며, 궁극적으로 세포사멸을 억제하는 효과를 가져올 것으로 생각할 수 있으며, 본 질환에서 병증을 완화 시킬 수 있을 것으로 사료된다.

In vitro Study of Nucleostemin as a Potential Therapeutic Target in Human Breast Carcinoma SKBR-3 Cells

  • Guo, Yu;Liao, Ya-Ping;Zhang, Ding;Xu, Li-Sha;Li, Na;Guan, Wei-Jun;Liu, Chang-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권5호
    • /
    • pp.2291-2295
    • /
    • 2014
  • Although nucleolar protein nucleostemin (NS) is essential for cell proliferation and early embryogenesis and expression has been observed in some types of human cancer and stem cells, the molecular mechanisms involved in mediation of cell proliferation and cell cycling remains largely elusive. The aim of the present study was to evaluate NS as a potential target for gene therapy of human breast carcinoma by investigating NS gene expression and its effects on SKBR-3 cell proliferation and apoptosis. NS mRNA and protein were both found to be highly expressed in all detected cancer cell lines. The apoptotic rate of the pcDNA3.1-NS-Silencer group ($12.1-15.4{\pm}3.8%$) was significantly higher than those of pcDNA3.1-NS ($7.2-12.0{\pm}1.7%$) and non-transfection groups ($4.1-6.5{\pm}1.8%$, P<0.01). MTT assays showed the knockdown of NS expression reduced the proliferation rate of SKBR-3 cells significantly. Matrigel invasion and wound healing assays indicated that the number of invading cells was significantly decreased in the pcDNA3.1-NS-siRNA group (P<0.01), but there were no significant difference between non-transfected and over-expression groups (P>0.05). Moreover, RNAi-mediated NS down-regulation induced SKBR-3 cell G1 phase arrest, inhibited cell proliferation, and promoted p53 pathway-mediated cell apoptosis in SKBR-3 cells. NS might thus be an important regulator in the G2/M check point of cell cycle, blocking SKBR-3 cell progression through the G1/S phase. On the whole, these results suggest NS might be a tumor suppressor and important therapeutic target in human cancers.

Effect of ciglitazone on adipogenic transdifferentiation of bovine skeletal muscle satellite cells

  • Zhang, Junfang;Li, Qiang;Yan, Yan;Sun, Bin;Wang, Ying;Tang, Lin;Wang, Enze;Yu Jia;Nogoy, Kim Margarette Corpuz;Li, Xiangzi;Choi, Seong-Ho
    • Journal of Animal Science and Technology
    • /
    • 제63권4호
    • /
    • pp.934-953
    • /
    • 2021
  • Ciglitazone is a member of the thiazolidinedione family, and specifically binds to peroxisome proliferator-activated receptor-γ (PPARγ), thereby promoting adipocyte differentiation. We hypothesized that ciglitazone as a PPARγ ligand in the absence of an adipocyte differentiation cocktail would increase adiponectin and adipogenic gene expression in bovine satellite cells (BSC). Muscle-derived BSCs were isolated from six, 18-month-old Yanbian Yellow Cattle. The BSC were cultured for 96 h in differentiation medium containing 5 µM ciglitazone (CL), 10 µM ciglitazone (CM), or 20 µM ciglitazone (CH). Control (CON) BSC were cultured only in a differentiation medium (containing 2% horse serum). The presence of myogenin, desmin, and paired box 7 (Pax7) proteins was confirmed in the BSC by immunofluorescence staining. The CL, CM, and CH treatments produced higher concentrations of triacylglycerol and lipid droplet accumulation in myotubes than those of the CON treatment. Ciglitazone treatments significantly increased the relative expression of PPARγ, CCAAT/enhancer-binding protein alpha (C/EBPα), C/EBPβ, fatty acid synthase, stearoyl-CoA desaturase, and perilipin 2. Ciglitazone treatments increased gene expression of Pax3 and Pax7 and decreased expression of myogenic differentiation-1, myogenin, myogenic regulatory factor-5, and myogenin-4 (p < 0.01). Adiponectin concentration caused by ciglitazone treatments was significantly greater than CON (p < 0.01). RNA sequencing showed that 281 differentially expressed genes (DEGs) were found in the treatments of ciglitazone. DEGs gene ontology (GO) analysis showed that the top 10 GO enrichment significantly changed the biological processes such as protein trimerization, negative regulation of cell proliferation, adipocytes differentiation, and cellular response to external stimulus. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that DEGs were involved in the p53 signaling pathway, PPAR signaling pathway, biosynthesis of amino acids, tumor necrosis factor signaling pathway, non-alcoholic fatty liver disease, PI3K-Akt signaling pathway, and Wnt signaling pathway. These results indicate that ciglitazone acts as PPARγ agonist, effectively increases the adiponectin concentration and adipogenic gene expression, and stimulates the conversion of BSC to adipocyte-like cells in the absence of adipocyte differentiation cocktail.

Bax의 발현증가 및 Caspase의 활성을 통한 봉독약침액 Melittin의 인체폐암세포 Apoptosis 유발에 관한 연구 (Apoptotic Cell Death by Melittin through Induction of Bax and Activation of Caspase Proteases in Human Lung Carcinoma Cells)

  • 안창범;임춘우;김철홍;윤현민;장경전;송춘호;최영현
    • Journal of Acupuncture Research
    • /
    • 제21권2호
    • /
    • pp.41-55
    • /
    • 2004
  • Objective : To investigate the possible molecular mechanism (s) of melittin as a candidate of anti-cancer drug, we examined the effects of the compound on the growth of human lung carcinoma cell line A549. Methods : Growth inhibitory study, flow cytometry analysis, SDS-polyacrylamide gel electrophoresis and Western blot analysis, RT-PCR and in vitro caspases activity assay were performed. Results : Melittin treatment declined the cell viability of A549 cells in a concentration-dependent manner, which was associated with induction of apoptotic cell death. Melittin treatment down-regulated the levels of Bcl-XS/L mRNA and protein expression of A549 cells, an anti-apoptotic gene, however, the those of Bax, a pro-apoptotic gene, were up-regulated. Melittin induced the proteolytic cleavage and activation of caspase-3 and caspase-9 protease in a dose-dependent manner without alteration of inhibitor of apoptosis proteins family and Akt expression. Western blot analysis and RT-PCR data revealed that the levels of tumor suppressor p53 and cyclin-dependent kinase inhibitor p21 were also remained unchanged. Conclusions : Taken together, these findings suggest that melittin-induced inhibition of human lung cancer cell growth is associated with the induction of apoptotic cell death via regulation of several major growth regulatory gene products, and melittin may have therapeutic potential in human lung cancer.

  • PDF

사람 간암 세포주인 HepG2에 대한 인진호탕(茵陳蒿湯)의 항암 효과 (Herbal medicine In-Jin-Ho-Tang as a potential anti-cancer drug by induction of apoptosis in human hepatoma HepG2 cells.)

  • 윤현정;김병완;이창현;정재하;허숙경;박원환;박선동
    • 대한본초학회지
    • /
    • 제22권3호
    • /
    • pp.27-37
    • /
    • 2007
  • Objectives: Hepatocellular carcinoma is the most common primary malignant tumor of the liver worldwide. In-Jin-Ho-Tang(IJHT) has been used as a traditional Chinese herbal medicine since ancient time. and today it is widely applied as a medication for jaundice which is associated with inflammation in liver. In this study, I investigated whether methanol extract of IJHT induced HepG2 cancer cell death. Methods: Cytotoxic activity of IJHT on HepG2 cells was using XTT assay. Apoptosis induction by Ros A in HCT116 cells was verified by the induction of cleavage of poly ADP-ribose polymerase (PARP). and activation of caspase-3, -8 and -9. The release of cytochrome c from mitochondria to cytosol. the level of Bcl-2 and Bax and the expression of p53 and p21 were examined by western blotting analysis. Furthermore, MAPKs activation was analyzed by western blotting analysis. Results: IJHT induced apoptosis in HepG2 cells. And treatment of IJHT resulted in the release of cytochrome c into cytosol, decreased anti-apoptotic Bcl-2, and increased pri-apoptotic Bax expression. IJHT markedly inactivated extracellular signal-regulated kinase (ERK1/2), and activated p38 mitogen-activated protein (MAP) kinase. Sodium orthovanadate (SOV), a phosphatase inhibitor, to reverse IJHT-induced ERK1/2 inactivation and SB203580, a specific p38 MAP Kinase inhibitor efficiently blocked apoptosis of HepG2. Thus, IJHT induces apoptosis in HepG2 cells via MAP kinase modulation. Conclusion: These results indicated that IJHT has some potential for use as an anti-cancer agent.

  • PDF

MiR-204 acts as a potential therapeutic target in acute myeloid leukemia by increasing BIRC6-mediated apoptosis

  • Wang, Zhiguo;Luo, Hong;Fang, Zehui;Fan, Yanling;Liu, Xiaojuan;Zhang, Yujing;Rui, Shuping;Chen, Yafeng;Hong, Luojia;Gao, Jincheng;Zhang, Mei
    • BMB Reports
    • /
    • 제51권9호
    • /
    • pp.444-449
    • /
    • 2018
  • Acute myeloid leukemia (AML) is one of the most common hematological malignancies all around the world. MicroRNAs have been determined to contribute various cancers initiation and progression, including AML. Although microRNA-204 (miR-204) exerts anti-tumor effects in several kinds of cancers, its function in AML remains unknown. In the present study, we assessed miR-204 expression in AML blood samples and cell lines. We also investigated the effects of miR-204 on cellular function of AML cells and the underlying mechanisms of the action of miR-204. Our results showed that miR-204 expression was significantly downregulated in AML tissues and cell lines. In addition, overexpression of miR-204 induced growth inhibition and apoptosis in AML cells, including AML5, HL-60, Kasumi-1 and U937 cells. Cell cycle analysis further confirmed an augmentation in theapoptotic subG1 population by miR-204 overexpression. Mechanistically, baculoviral inhibition of apoptosis protein repeat containing 6 (BIRC6) was identified as a direct target of miR-204. Enforcing miR-204 expression increased the luciferase activity and expression of BIRC6, as well as p53 and Bax expression. Moreover, restoration of BIRC6 reversed the pro-apoptotic effects of miR-204 overexpression in AML cells. Taken together, this study demonstrates that miR-204 causes AML cell apoptosis by targeting BIRC6, suggesting miR-204 may play an anti-carcinogenic role in AML and function as a novel biomarker and therapeutic target for the treatment of this disease.

Iris Nertschinskia Ethanol Extract Differentially Induces Cytotoxicity in Human Breast Cancer Cells Depending on AKT1/2 Activity

  • Shin, Jae-Sik;Maeng, Hyung-Gun;Hong, Seung-Woo;Moon, Jai-Hee;Kim, Jin-Sun;Suh, Young-Ah;Kim, Eun-Sung;Lee, Young-Min;Kim, Ye-Seul;Choi, Eun-Kyung;Kim, Inki;Lee, Sok-Young;Cho, Dong-Hyung;Hong, Nam-Joo;Kim, Tae-Won;Jin, Dong-Hoon;Lee, Wang Jae
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권12호
    • /
    • pp.6511-6516
    • /
    • 2012
  • Recently, we reported that an ethanol extract of Iris nertschinskia induces p53-dependent apoptosis in the MCF7 human breast cancer cell line. However, the detailed mechanisms were not fully explored. Here, we demonstrate another aspect of the activity of I. nertschinskia in breast cancer cells. We compared the response to an ethanol extract of I. nertschinskia in two different human breast cancer cell lines, Hs578Tand MDA-MB231, respectively with relatively low and high AKT1/2 activity by trypan blue exclusion assay and FACS analysis. Knockdown of endogenous AKT1 or AKT2 in breast cancer cells by RNA interference determined the sensitivity to I. nertschinskia ethanol extract compared to control cells. The I. nertschinskia ethanol extract induced cell death in a manner that depended on the level of phosphorylated AKT1/2 protein and was associated with a significant increase in the sub-G1 cell population, indicative of apoptosis. Our results indicate that an ethanol extract of I. nertschinskia differentially induces cell death in breast cancer cells depending on their level of phosphorylated AKT1/2.