• Title/Summary/Keyword: tumor profile

Search Result 163, Processing Time 0.022 seconds

Lifestyle and Sporadic Colorectal Cancer in India

  • Sinha, Rupal;Doval, Dinesh Chandra;Hussain, Showket;Kumar, Kapil;Singh, Shivendra;Basir, Seemi Farhat;Bharadwaj, Mausumi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.17
    • /
    • pp.7683-7688
    • /
    • 2015
  • Background: The study evaluated the patient, lifestyle and tumor profile in patients undergoing upfront surgery for sporadic colorectal cancer (CRC) in Indian population. Materials and Methods: One hundred consecutive patients were included. Details related to their demographic profile, habits, signs and symptoms, tumor profile, further treatment and follow up were recorded. Results: The majority of the patients had colonic cancer (68%), advanced tumor stage 3 & 4 (46%), moderately differentiated tumors (70%) with absence of lymphatic invasion (60%) and metastasis (90%). Correlations between tumor location and abdominal pain (p-value 0.002), bleeding per rectum (p-value <0.001), difficulty in micturition (p-value 0.012) and constipation (p-value 0.007) were found to be statistically significant. Abdominal pain was more frequently reported in patients with metastasis (p-value 0.031). Loss of weight statistically correlated with absence of lymphatic invasion (p-value 0.047). Associations between tumor stage and alcohol intake (p-value 0.050) and non vegetarian diet (p-value 0.006); lymphatic invasion and intake of spicy food (p-value 0.040) and non vegetarian diet (p-value 0.001) and metastasis and alcohol intake (p-value 0.041) were also observed. Age and tumor grade were also correlated (p-value 0.020). Conclusions: Minimizing the adverse lifestyle factors can help in reducing the overall incidence of CRC in the Indian population.

Clinical Profile, Treatment and Survival Outcome of Testicular Tumors: A Pakistani Perspective

  • Bhatti, Abu Bakar Hafeez;Ahmed, Irfan;Ghauri, Rashid Khan;Saeed, Qamar;Mir, Khurram
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.277-280
    • /
    • 2014
  • Background: Testicular cancer management is considered a marvel of modern science with excellent treatment results. Pakistan has a distinct ethnic variation and geographic distribution but data regarding clinical presentation of testicular tumors and their management is under reported. The objective of this study was to determine clinical profile, treatment modalities and survival outcome of testicular tumors in the Pakistani population. Materials and Methods: A retrospective review of patients who received treatment for testicular cancer at Shaukat Khanum Cancer Hospital from January 2009 to December 2012 was performed. Patient demographics, clinical features at presentation and treatment modalities were assessed. For categorical variables chi square test was used. Survival was calculated using Kaplan Meier survival curves and Log rank test was employed to determine significance. Results: The most common tumor was mixed germ cell tumor in 49% patients. For all tumor variants except seminoma, stage III was the most common clinical stage at presentation. Majority of patients with non seminomatous germ cell tumors presented in the15-30 year age group as compared to seminoma which was most prevalent in the 30-40 year age group. Orchiectomy followed by chemotherapy was the most common treatment modality in 80% patients. Expected 5 year survival for seminomas and non-seminomatous germ cell tumors was 96% and 90% respectively which was not significantly different (p=0.2). Conclusions: Despite a distinct clinical profile of testicular tumors in Pakistani population, survival is comparable with published reports.

Preparation of 5-Fluorouracil-Loaded Poly(L-lactide-co-glycolide) Wafer and Evaluation of In Vitro Release Behavior

  • Lee, Jin-Soo;Chae, Gang-Soo;An, Tae-Kun;Gilson Khang;Cho, Sun-Hang;Lee, Hai-Bang
    • Macromolecular Research
    • /
    • v.11 no.3
    • /
    • pp.183-188
    • /
    • 2003
  • The controlled delivery of anticancer agents using biodegradable polymeric implant has been developed to solve the problem of penetration of blood brain barrier and severe systemic toxicity. This study was performed to prepare 5-FU-loaded poly (L-lactide-co-glycolide) (PLGA) wafer fabricated microparticles prepared by two different method and to evaluate their release profile for the application of the treatment of brain tumor. 5-FU-loaded PLGA microparticles were characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), and differential scanning calorimetry (DSC). SEM observation of the 5-FU-loaded PLGA microparticles prepared by rotary solvent evaporation method showed that 5-FU was almost surrounded by PLGA and significant reduction of crystallinity of 5-FU was confirmed by XRD. In case of release profile of 5-FU from 5-FU-loaded PLGA wafer fabricated microparticles prepared by mechanical mixing, the release profile of 5-FU followed near first order release kinetics. In contrast to the above result, release profile of 5-FU from 5-FU-loaded PLGA wafer fabricated microparticles prepared by rotary solvent evaporation method followed near zero order release kinetics. These results indicate that preparation method of the 5-FU-loaded PLGA microparticles to fabricate into wafers was contributed to drug release profile.

A FRACTIONAL-ORDER TUMOR GROWTH INHIBITION MODEL IN PKPD

  • Byun, Jong Hyuk;Jung, Il Hyo
    • East Asian mathematical journal
    • /
    • v.36 no.1
    • /
    • pp.81-90
    • /
    • 2020
  • Many compartment models assume a kinetically homogeneous amount of materials that have well-stirred compartments. However, based on observations from such processes, they have been heuristically fitted by exponential or gamma distributions even though biological media are inhomogeneous in real environments. Fractional differential equations using a specific kernel in Pharmacokinetic/Pharmacodynamic (PKPD) model are recently introduced to account for abnormal drug disposition. We discuss a tumor growth inhibition (TGI) model using fractional-order derivative from it. This represents a tumor growth delay by cytotoxic agents and additionally show variations in the equilibrium points by the change of fractional order. The result indicates that the equilibrium depends on the tumor size as well as a change of the fractional order. We find that the smaller the fractional order, the smaller the equilibrium value. However, a difference of them is the number of concavities and this indicates that TGI over time profile for fitting or prediction should be determined properly either fractional order or tumor sizes according to the number of concavities shown in experimental data.

In vivo Imaging Biodistribution Profile of a New Macrocyclic Gadolinium Chelate as a Highly Stable Multifunctional MRI Contrast Agent

  • Sung, Bo Kyung;Jo, Yeong Woo;Chang, Yongmin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.1
    • /
    • pp.34-37
    • /
    • 2019
  • Gadolinium contrast agents (CAs) are integral components of clinical magnetic resonance imaging (MRI). However, safety concerns have arisen regarding the use of gadolinium CAs, due to their association with nephrogenic systemic fibrosis (NSF). Furthermore, recently the long-term retention of $Gd^{3+}-based$ CAs in brains patients with normal renal function raised another possible safety issue. The safety concerns of $Gd^{3+}-based$ CAs have been based on the ligand structure of $Gd^{3+}-based$ CAs, and findings that $Gd^{3+}-based$ CAs with linear ligand structures showed much higher incidences of NSF and brain retention of CAs than $Gd^{3+}-based$ CAs with macrocyclic ligand structure. In the current study, we report the in vivo biodistribution profile of a new highly stable multifunctional $Gd^{3+}-based$ CA, with macrocyclic ligand structure (HNP-2006). MR imaging using HNP-2006 demonstrated a significant contrast enhancement in many different organs. Furthermore, the contrast enhanced tumor imaging using HNP-2006 confirmed that this new macrocyclic CA can be used for detecting tumor in the central nervous system. Therefore, this new multifunctional HNP-2006 with macrocyclic ligand structure shows great promise for whole-body clinical application.

Antitumor and antioxidant status of Galega purpurea root in Ehrlich ascites carcinoma bearing Swiss albino mice

  • Gupta, M;Mazumder, UK;Gomathi, P
    • Advances in Traditional Medicine
    • /
    • v.7 no.4
    • /
    • pp.426-435
    • /
    • 2007
  • The present study was designed to determine the antitumor and antioxidant properties of methanol extract from the root of Galega purpurea (Papilionaceae) (MEGP) against Ehrlich Ascites Carcinoma (EAC) bearing Swiss albino mice. Acute and short-term toxicity studies were performed initially in order to ascertain the safety of MEGP. The effect of MEGP on the growth of transplantable murine tumor, life span of EAC bearing hosts and simultaneous alterations in the hematological profile and liver biochemical parameters (lipid peroxidation, antioxidant enzymes) were estimated. The MEGP showed decrease in tumor volume, packed cell volume and viable cell count and increases the nonviable cell count and mean survival time thereby increasing life span of EAC tumor bearing mice. Hematological profile reverted to more or less normal levels in extract treated mice. Treatment with MEGP decreased the levels of lipid peroxidation and increased the levels of glutathione, superoxide dismutase and catalase. The results suggested that the methanol extract of Galega purpurea root exhibited antitumor effect by modulating lipid peroxidation and augmenting antioxidant defense system in EAC bearing mice.

Microarray Analysis of the Gene Expression Profile in Diethylnitrosamine-induced Liver Tumors in Mice

  • Jung Eun-Soo;Park Jung-Duck;Ryu Doug-Young
    • Environmental Mutagens and Carcinogens
    • /
    • v.25 no.4
    • /
    • pp.134-142
    • /
    • 2005
  • Liver cancer is a leading cause of tumor-related mortality, Diethylnitrosamine (DEN) is one of the most extensively studied hepatic carcinogens to date. In this study, the mRNA expression profile in DEN-induced liver tumors in mice was analyzed using DNA microarrays. We report increased expression of genes that participate in hypoxia response, including metallothionein 1 (Mt1), metallothionein 2 (Mt2), fatty acid synthase (Fasn), transferrin (Trf), adipose differentiation-related Protein (AdfP) and ceruloplasmin (CP), as well as those involved in predisposition and development of cancers, such as cytochrome P450 2A5 (Cyp2a5), alpha 2-HS-glycoprotein (Ahsg) and Jun-B oncogene (Junb). The hepatic iron regulatory peptide, hepcidin (Hampl), was downregulated in DEN-stimulated liver tumors. Expression of tumor suppressor genes, such as tripartite motif protein 13 (Trim13), was decreased under these conditions. The data collectively indicate that DEN-induced tumor development can be exploited as a possible model for liver cancer, since this process involves various genes with important functions in hepatic carcinogenesis.

  • PDF

A Comparison Study with the Vatiation of Isocenter and Collimator in Stereotactic Radiosurgery (방사선 수술시 Isocenter, 콜리메이터 변수에 따른 선량 분포 비교연구)

  • 오승종;박정훈;곽철은;이형구;최보영;이태규;김문찬;서태석
    • Progress in Medical Physics
    • /
    • v.13 no.3
    • /
    • pp.129-134
    • /
    • 2002
  • The radiosurgery is planned that prescribed dose was irradiated to tumor for obtaining expected remedial value in stereotactic radiosurgery. The planning for many irregular tumor shape requires long computation time and skilled planners. Due to the rapid development in computer power recently, many optimization methods using computer has been proposed, although the practical method is still trial and error type of plan. In this study, many beam variables were considered and many tumor shapes were assumed cylinderical ideal models. Then, beam variables that covered the target within 50% isodose curve were searched, the result was compared and analysed. The beam variables considered were isocenter separation distance, number of isocenters and collimator size. Dose distributions obtained with these variables were analysed by dose volume histogram(DVH) and dose profile at orthogonal plane. According to the results compared, the use of more isocenters than specified isocenter dosen't improve DVH and dose profile but only increases complexity of plan. The best result of DVH and dose profile are obtainedwhen isocenter separation was 1.0-1.2 in using same number of isocenter.

  • PDF

Comparison of Lipid Profile Ratios in Patients with High-grade Brain Cancers according to the Presence of Recurrence during Cancer-related Therapy (항암치료 받는 악성 뇌종양 환자의 재발여부에 따른 지질프로필 비율의 비교)

  • Kim, Sanghee
    • Journal of Korean Biological Nursing Science
    • /
    • v.19 no.2
    • /
    • pp.107-112
    • /
    • 2017
  • Purpose: The purpose of this study was to identify the lipid profile ratios as factors affecting disease progress in patients with high-grade primary brain cancers undergoing concurrent chemoradiotherapy (CCRT) and adjuvant chemotherapy. Methods: The levels of lipid profile ratios were evaluated by looking at the total cholesterol (TC) to high-density lipoprotein (HDL)-cholesterol (TC/HDL-c), low-density lipoprotein (LDL)-cholesterol to HDL-cholesterol (LDL-c/HDL-c), and triglycerides to HDL-cholesterol (TG/HDL-c). This descriptive research was conducted 7 months after the initiation of CCRT and adjuvant chemotherapy. Results: A total of 36 patients with newly diagnosed primary malignant brain cancer were included in the study. The levels of lipid profile ratios such as TC/HDL-c, LDL-c/HDL-c, TG/HDL-c were significantly different between the patients with and without disease progress at 7 months after initiation of CCRT and adjuvant chemotherapy. Conclusion: The lipid profile ratios were indicators affecting disease prognosis with tumor-related factors at 7 months after initiation of CCRT and adjuvant chemotherapy. Therefore, lipid profile ratios indicating hyperlipidemia in patients with high-grade brain cancers should be carefully monitored during and after cancer-related therapy.

Study of Motion-induced Dose Error Caused by Irregular Tumor Motion in Helical Tomotherapy (나선형 토모테라피에서 불규칙적인 호흡으로 발생되는 움직임에 의한 선량 오차에 대한 연구)

  • Cho, Min-Seok;Kim, Tae-Ho;Kang, Seong-Hee;Kim, Dong-Su;Kim, Kyeong-Hyeon;Cheon, Geum Seong;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.119-126
    • /
    • 2015
  • The purpose of this study is to analyze motion-induced dose error generated by each tumor motion parameters of irregular tumor motion in helical tomotherapy. To understand the effect of the irregular tumor motion, a simple analytical model was simulated. Moving cases that has tumor motion were divided into a slightly irregular tumor motion case, a large irregular tumor motion case and a patient case. The slightly irregular tumor motion case was simulated with a variability of 10% in the tumor motion parameters of amplitude (amplitude case), period (period case), and baseline (baseline case), while the large irregular tumor motion case was simulated with a variability of 40%. In the phase case, the initial phase of the tumor motion was divided into end inhale, mid exhale, end exhale, and mid inhale; the simulated dose profiles for each case were compared. The patient case was also investigated to verify the motion-induced dose error in 'clinical-like' conditions. According to the simulation process, the dose profile was calculated. The moving case was compared with the static case that has no tumor motion. In the amplitude, period, baseline cases, the results show that the motion-induced dose error in the large irregular tumor motion case was larger than that in the slightly irregular tumor motion case or regular tumor motion case. Because the offset effect was inversely proportion to irregularity of tumor motion, offset effect was smaller in the large irregular tumor motion case than the slightly irregular tumor motion case or regular tumor motion case. In the phase case, the larger dose discrepancy was observed in the irregular tumor motion case than regular tumor motion case. A larger motion-induced dose error was also observed in the patient case than in the regular tumor motion case. This study analyzed motion-induced dose error as a function of each tumor motion parameters of irregular tumor motion during helical tomotherapy. The analysis showed that variability control of irregular tumor motion is important. We believe that the variability of irregular tumor motion can be reduced by using abdominal compression and respiratory training.