• Title/Summary/Keyword: tumor necrosis factor-kappaB

Search Result 436, Processing Time 0.028 seconds

Inhibitory Effects of β-Glycyrrhetinic Acid on Tumor Necrosis Factor-α Production in RAW 264.7 Cells

  • Park, Kyoung-Sik
    • Journal of Applied Biological Chemistry
    • /
    • v.53 no.3
    • /
    • pp.147-153
    • /
    • 2010
  • $\beta$-glycyrrhetinic acid (GA), the active principle of licorice (Glycyrrhiza glabra L.) has been reported to exhibit anti-inflammatory properties in different animal models. In this study, the effects of GA on the production of inflammatory mediators including tumor necrosis factor (TNF)-$\alpha$, interleukin (IL)-6, nitric oxide (NO), and prostaglandin E (pGE)-2 were examined in RAW 264.7 cells in vitro. Furthermore, to elucidate a possible mechanism for the inhibitory effect of GA on the production of TNF-$\alpha$, it was investigated whether the treatment of GA affects the I-${\kappa}B{\alpha}$ degradation and subsequent nuclear translocation of NF-${\kappa}B$. Various inflammatory responses were induced in the culture system by treating with a lipopolysaccharide (LPS). GA showed anti-inflammatory activities in dose-dependant manner with $IC_{50}$ of $5.4{\mu}M$ by inhibiting the production of TNF-$\alpha$ in RAW 264.7 cells. In addition, the treatment of GA blocked both I-${\kappa}B{\alpha}$ degradation and the nuclear translocation of NF-${\kappa}B$ from cytosol to nucleus. However, it did not affect the production of IL-6, NO, and PGE-2, implying the direct blocking of the production of TNF-$\alpha$ resulting from both the I-${\kappa}B{\alpha}$ degradation and the nuclear translocation of NF-${\kappa}B$. This finding might provide the underlying mechanism to explain the reported anti-inflammatory activities of GA in animal models.

Trans-10, cis-12 Conjugated Linoleic Acid Modulates Tumor Necrosis Factor-${\alpha}$ Production and Nuclear Factor-${\kappa}B$ Activation in RAW 264.7 Macrophages Through Formation of Reactive Oxygen Species (RAW 264.7 세포에 있어 t10c12-CLA의 ROS를 통한 TNF-${\alpha}$ 생산 및 NF-${\kappa}B$ 활성 조절)

  • Park, So-Young;Kang, Byeong-Teck;Kang, Ji-Houn;Yang, Mhan-Pyo
    • Journal of Veterinary Clinics
    • /
    • v.31 no.6
    • /
    • pp.469-476
    • /
    • 2014
  • The aims of this study were to explore the effects of conjugated linoleic acid (CLA) on reactive oxygen species (ROS) production in lipopolysaccharide (LPS)-naïve and LPS-stimulated RAW 264.7 macrophages and to examine whether these effects affect the regulation of tumor necrosis factor-alpha (TNF-${\alpha}$) production, and nuclear factor-kappa B (NF-${\kappa}B$) and peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) activation. Trans-10, cis-12(t10c12)-CLA increased the production of ROS, as well as TNF-${\alpha}$ in LPS-naïve RAW 264.7 cells. The CLA-induced TNF-${\alpha}$ production was suppressed by treatment of diphenyleneiodonium chloride (DPI), a NADPH oxidase inhibitor. In addition, CLA enhanced the activities of NF-${\kappa}B$ and $PPAR{\gamma}$ in LPS-naïve RAW 264.7 cells, and this effect was abolished with DPI treatment. LPS treatment increased ROS production, whereas CLA reduced LPS-induced ROS production. LPS increased both TNF-${\alpha}$ production and NF-${\kappa}B$ activity, whereas t10c12-CLA reduced TNF-${\alpha}$ production and NF-${\kappa}B$ activity in LPS-stimulated RAW 264.7 cells. DPI treatment suppressed LPS-induced ROS production and NF-${\kappa}B$ activity. Moreover, DPI enhanced the inhibitory effects of t10c12-CLA on TNF-${\alpha}$ production and NF-${\kappa}B$ activation in LPS-stimulated RAW 264.7 cells. However, neither t10c12-CLA nor DPI affected $PPAR{\gamma}$ activity in LPS-stimulated RAW 264.7 cells. Taken together, these data indicate that t10c12-CLA induces TNF-${\alpha}$ production by increasing ROS production in LPS-naïve RAW 264.7 cells, which is mediated by the enhancement of NF-${\kappa}B$ activity via $PPAR{\gamma}$ activation. By contrast, t10c12-CLA suppresses TNF-${\alpha}$ production by inhibiting ROS production and NF-${\kappa}B$ activation via a $PPAR{\gamma}$-independent pathway in LPS-stimulated RAW 264.7 cells. These results suggest that t10c12-CLA can modulate TNF-${\alpha}$ production and NF-${\kappa}B$ activation through formation of ROS in RAW 264.7 macrophages.

Shikonin Isolated from Lithospermum erythrorhizon Downregulates Proinflammatory Mediators in Lipopolysaccharide-Stimulated BV2 Microglial Cells by Suppressing Crosstalk between Reactive Oxygen Species and NF-κB

  • Prasad, Rajapaksha Gedara;Choi, Yung Hyun;Kim, Gi-Young
    • Biomolecules & Therapeutics
    • /
    • v.23 no.2
    • /
    • pp.110-118
    • /
    • 2015
  • According to the expansion of lifespan, neuronal disorder based on inflammation has been social problem. Therefore, we isolated shikonin from Lithospermum erythrorhizon and evaluated anti-inflammatory effects of shikonin in lipopolysaccharide (LSP)-stimulated BV2 microglial cells. Shikonin dose-dependently inhibits the expression of the proinflammatory mediators, nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), and tumor necrosis factor-${\kappa}B$ (TNF-${\alpha}$) as well as their main regulatory genes and products such as inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and TNF-${\alpha}$ in LPS-stimulated BV2 microglial cells. Additionally, shikonin suppressed the LPS-induced DNA-binding activity of nuclear factor-${\kappa}B$ (NF-${\kappa}B$) to regulate the key regulatory genes of the proinflammatory mediators, such as iNOS, COX-2, and TNF-${\alpha}$, accompanied with downregulation of reactive oxygen species (ROS) generation. The results indicate that shikonin may downregulate the expression of proinflammatory genes involved in the synthesis of NO, $PGE_2$, and TNF-${\alpha}$ in LPS-treated BV2 microglial cells by suppressing ROS and NF-${\kappa}B$. Taken together, our results revealed that shikonin exerts downregulation of proinflammatory mediators by interference the ROS and NF-${\kappa}B$ signaling pathway.

The Effects of Chelidonium majus on NO and $TNF-{\alpha}$ Production in Macrophages (백굴채가 대식세포의 NO 및 $TNF-{\alpha}$ 생성에 미치는 영향)

  • 김홍준;문석재;김동웅;문구;원경숙;윤준철;김유경;원진희
    • The Journal of Korean Medicine
    • /
    • v.24 no.2
    • /
    • pp.138-147
    • /
    • 2003
  • Objectives : In this study, we investigated the mechanism by which Chelidonium majus (CM) regulates nitric oxide (NO) production. Methods : Using mouse peritoneal macrophages, the mechanism by which CM regulates NO or tumor necrosis $factor-{\alpha}(TNF-{\alpha})$ production was examined. NO release was measured by the Griess method. $TNF-{\alpha}$ production was measured by the ELISA method. The protein extracts were prepared and samples were analyzed for the inducible NOS(iNOS) expression and nuclear factor kappa $B(NF-{\kappa}B)$ activation by Western blotting. Results : When CM was used in combination with recombinant $interferon-{\gamma}{\;}(rIFN-{\gamma})$, there was a marked cooperative induction of NO production. CM had an effect on NO production by itself. The expression of the iNOS gene was increased in $rIFN-{\gamma}$ plus CM-stimulated peritoneal macrophages and almost completely inhibited by pre-treatment with pyrrolidine dithiocarbamate (PDTC), an inhibitor of $NF-{\kappa}B$. The $NF-{\kappa}B$ activation was increased in rIFN-{\gamma} plus CM-induced peritoneal macrophages. The increased production of NO from $rIFN-{\gamma}$ plus CM-stimulated peritoneal rnacrophages was decreased by the treatment with $N^{G}-monomethyl-{_L}-arginine{\;}(N^{G}MMA){\;}N^{\alpha}-Tosyl-Phe$ chloromethyl ketone (TPCK) , and was almost completely inhibited by pre-treatment with PDTC. Furthermore, treatment with CM alone or rIFN-{\gamma} plus CM in peritoneal macrophages caused a significant increase in $TNF-{\alpha}$ production. PDTC decreased CM-induced $TNF-{\alpha}$ production significantly. After CM treatment in HT-29 or AGS cells, cell viability decreased. Conclusions : These findings demonstrate that CM increases the production of NO and $TNF-{\alpha}{\;}by{\;}rIFN-{\gamma}-primed$ macrophages and suggest that NF-B plays a critical role in mediating these effects of CM.

  • PDF

Shigyungbanha-tang Exhibits Anti-inflammatory Effects by Inhibiting $I{\kappa}B-{\alpha}$ Degradation in LPS-stimulated Peritoneal Macrophages (LPS로 유도한 복강대식세포에서 $I{\kappa}B-{\alpha}$ 분해억제에 의한 시경반하탕(柴梗半夏湯)의 항염증효과)

  • Shin, Jo-Young;Lee, Si-Hyeong;Lee, Seung-Eon
    • The Journal of Internal Korean Medicine
    • /
    • v.28 no.3
    • /
    • pp.442-452
    • /
    • 2007
  • Objectives : The purpose of this study was to investigate the toll-like receptor (TLR)-4 mediated anti-inflammatory effects of extract from Shigyungbanha-tang (SBT) on the peritoneal macrophage. Methods : To evaluate of TLR-4 mediated inflammatory of SBT. we examined NO and cytokine production in TRL-4 ligand (LPS : lipopolysaccharide) induced macrophages. Furthermore, we examined its molecular mechanism using western blot. Results : Extract from SBT itself does not have any cytotoxic effect in the peritoneal macrophages. Extract from SBT reduced LPS-induced nitric oxide (NO). tumor necrosis factor-alpha ($TNF-{\alpha}$), interleukin (IL)-6 and IL-12 production in peritoneal macrophages. SBT inhibited degradation of inhibitor kappa B-alpha ($I{\kappa}B-{\alpha}$) in the TLR-4 mediated peritoneal macrophages. Conclusions : These results suggest that SBT inhibits NO and cytokines production through inhibiting nuclear factor-kappaB (NF-${\kappa}$B) activation in peritoneal macrophage and that SBT may be beneficial oriental medicine for inflammation.

  • PDF

Tumor Necrosis Factor ${\alpha}$ up-regulates the Expression of beta2 Adrenergic Receptor via NF-${\kappa}B$-dependent Pathway in Osteoblasts

  • Baek, Kyunghwa;Kang, Jiho;Hwang, Hyo Rin;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.38 no.3
    • /
    • pp.121-126
    • /
    • 2013
  • Tumor necrosis factor alpha ($TNF{\alpha}$) is a multifunctional inflammatory cytokine that regulates various cellular and biological processes. Increased levels of $TNF{\alpha}$ have been implicated in a number of human diseases including diabetes and arthritis. Sympathetic nervous system stimulation via the beta2-adrenergic receptor (${\beta}2AR$) in osteoblasts suppresses osteogenic activity. We previously reported that $TNF{\alpha}$ upregulates ${\beta}2AR$ expression in murine osteoblastic cells and that this modulation is associated with $TNF{\alpha}$ inhibition of osteoblast differentiation. In our present study, we explored whether $TNF{\alpha}$ induces ${\beta}2AR$ expression in human osteoblasts and then identified the downstream signaling pathway. Our results indicated that ${\beta}2AR$ expression was increased in Saos-2 and C2C12 cells by $TNF{\alpha}$ treatment, and that this increase was blocked by the inhibition of NF-${\kappa}B$ activation. Chromatin immunoprecipitation and luciferase reporter assay results indicated that NF-${\kappa}B$ directly binds to its cognate elements on the ${\beta}2AR$ promoter and thereby stimulates ${\beta}2AR$ expression. These findings suggest that the activation of $TNF{\alpha}$ signaling in osteoblastic cells leads to an upregulation of ${\beta}2AR$ and also that $TNF{\alpha}$ induces ${\beta}2AR$ expression in an NF-${\kappa}B$-dependent manner.

The immune enhancement effect of Nelumbo nucifera Gaertner Seed Extract (NSE) in murine macrophage RAW 264.7 cells (RAW 264.7 대식세포에서 연자육 추출물(Nelumbo nucifera Gaertner Seed Extract, NSE)의 면역 증강 효과)

  • Se Jeong Kim;San Kim;Se Hyeon Jang;Sung Ran Yoon;Bo Ram So;Jeong Min Park;Jung A Ryu;Sung Keun Jung
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.23-28
    • /
    • 2023
  • Since the global shock caused by COVID-19, interest in immune-enhancing materials is rapidly increasing, therefore, the development of novel materials is necessary from the industrial and health perspectives. In this study, we selected Nelumbo nucifera Gaertner Seed Extract (NSE) and evaluated immune enhancement effect by using RAW 264.7 murine macrophage cells. NSE significantly up-regulated production of nitric oxide and reactive oxygen species without affecting cell viability in RAW 264.7 cells. Additionally, NSE exhibited an increase of inducible nitric oxide synthase and cyclooxygenase-2 expression in RAW 264.7 cells. The enzyme-linked immunosorbent assay results showed that NSE-treatment significantly enhanced production of interleukin 6 and tumor necrosis factor-α in RAW 264.7 cells. Furthermore, we observed that NSE significantly up-regulated phosphorylation of p65, I kappa B kinase α/β, and I kappa B (IκB) α as well as down-regulation of IκB α expression in RAW 264.7 cells. Our findings indicate that NSE could be the potential health-functional food material with capacity of improving immunity via Nuclear factor-kappa B signaling pathway.

The Anti-inflammatory Mechanism of Xanthoangelol E is Through the Suppression of NF-${\kappa}B$/Caspase-1 Activation in LPS-stimulated Mouse Peritoneal Macrophage

  • Seoa, Jung-Ho;Kim, Su-Jin
    • Biomedical Science Letters
    • /
    • v.18 no.4
    • /
    • pp.345-354
    • /
    • 2012
  • Angelica keiskei has exhibited numerous pharmacological effects including antitumor, antimetastatic, and antidiabetic effects. However, the anti-inflammatory effects and mechanisms employed by xanthoangelol E isolated from Angelica keiskei are incompletely understood. In this study, we attempted to determine the effects of Xanthoangelol E on the lipopolysaccharide (LPS)-stimulated mouse peritoneal macrophage. The findings of this study demonstrated that xanthoangelol E inhibited the production of tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6, and prostaglandin $E_2$ ($PGE_2$). Xanthoangelol E inhibited the enhanced levels of cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) caused by LPS. Additionally, we showed that the anti-inflammatory effect of xanthoangelol E is through the regulation of the activation of nuclear factor (NF)-${\kappa}B$ and caspase-1. These results provide novel insights into the pharmacological actions of xanthoangelol E as a potential candidate for the development of new drugs to treat inflammatory diseases.

The immune enhancement effect of Cheonggukjang Water Extract (CWE) via activation of NF-κB pathways in murine macrophage RAW 264.7 cells (RAW 264.7 대식세포에서 청국장 열수 추출물(Cheonggukjang Water Extract, CWE)의 면역 증강 효과)

  • Sehyeon Jang;San Kim;Se Jeong Kim;Sung Ran Yoon;Bo Ram So;Jung A Ryu;Jeong Min Park;Sung Keun Jung
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.282-288
    • /
    • 2023
  • Due to the COVID-19 pandemic, the immuneenhancing health functional food market that protects our bodies from pathogens such as viruses continues to grow. In this study, we aimed to prove the Cheonggukjang, a high-nutrient food with high protein, fat, and dietary fiber content, as an immuneenhancing nutraceutical. Cheonggukjang water extract (CWE) increased the production of nitric oxide, reactive oxygen species, and cytokines such interleukin (IL)-6, IL-1β, and tumor necrosis factor-α without affecting viability in RAW 264.7 cells. Furthermore, CWE significantly upregulated the expression of inducible nitric oxide synthase and cyclooxygenase-2 in RAW 264.7 cells. CWE enhanced the phosphorylation of I kappa B kinase α/β and I kappa B (IκB)α, as well as the degradation of IκBα. CWE also induced increased phosphorylation of nuclear factor-kappa B p65 and facilitated the redistribution of p65 from the cytoplasm to the nucleus in RAW 264.7 cells. These findings suggest that CWE has potential as a health functional food material that can enhance the innate immune response.

Atopic Dermatitis-Related Inflammation in Macrophages and Keratinocytes: The Inhibitory Effects of Bee Venom

  • Kim, Deok-Hyun;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.36 no.2
    • /
    • pp.80-87
    • /
    • 2019
  • Background: This study investigated the anti-inflammatory effects of bee venom (BV) through the inhibition of nuclear factor kappa beta ($NF-{\kappa}B$) expression in macrophages and keratinocytes. Methods: Cell viability assays were performed to investigate the cytotoxicity of BV in activated macrophages [lipopolysaccharide (LPS)] and keratinocytes [interferon-gamma/tumor necrosis factor-alpha ($IFN-{\gamma}/TNF-{\alpha}$)]. A luciferase assay was performed to investigate the cellular expression of $NF-{\kappa}B$ in relation to BV dose. The expression of $NF-{\kappa}B$ inhibitors ($p-I{\kappa}B{\alpha}$, $I{\kappa}B{\alpha}$, and p50 and p65) were determined by Western Blot analysis, and the electromobility shift assay. A nitrite quantification assay was performed to investigate the effect of BV, and $NF-{\kappa}B$ inhibitor on nitric oxide (NO) production in macrophages. In addition, Western Blot analysis was performed to investigate the effect of BV on the expression of mitogen-activated protein kinases (MAPK) in activated macrophages and keratinocytes. Results: BV was not cytotoxic to activated macrophages and keratinocytes. Transcriptional activity of $NF-{\kappa}B$, and p50, p65, and $p-I{\kappa}B{\alpha}$ expression was reduced by treatment with BV in activated macrophages and keratinocytes. Treatment with BV and an $NF-{\kappa}B$ inhibitor, reduced the production of NO by activated macrophages, and also reduced $NF-{\kappa}B$ transcriptional activity in activated keratinocytes (compared with either BV, or $NF-{\kappa}B$ inhibitor treatment). Furthermore, BV decreased p38, p-p38, JNK, and p-JNK expression in LPS-activated macrophages and $IFN-{\gamma}/TNF-{\alpha}$-activated keratinocytes. Conclusion: BV blocked the signaling pathway of $NF-{\kappa}B$, which plays an important role in the inflammatory response in macrophages and keratinocytes. These findings provided the possibility of BV in the treatment of atopic dermatitis.