Browse > Article
http://dx.doi.org/10.4062/biomolther.2015.006

Shikonin Isolated from Lithospermum erythrorhizon Downregulates Proinflammatory Mediators in Lipopolysaccharide-Stimulated BV2 Microglial Cells by Suppressing Crosstalk between Reactive Oxygen Species and NF-κB  

Prasad, Rajapaksha Gedara (Department of Marine Life Sciences, Jeju National University)
Choi, Yung Hyun (Department of Biochemistry, College of Oriental Medicine, Dongeui University)
Kim, Gi-Young (Department of Marine Life Sciences, Jeju National University)
Publication Information
Biomolecules & Therapeutics / v.23, no.2, 2015 , pp. 110-118 More about this Journal
Abstract
According to the expansion of lifespan, neuronal disorder based on inflammation has been social problem. Therefore, we isolated shikonin from Lithospermum erythrorhizon and evaluated anti-inflammatory effects of shikonin in lipopolysaccharide (LSP)-stimulated BV2 microglial cells. Shikonin dose-dependently inhibits the expression of the proinflammatory mediators, nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), and tumor necrosis factor-${\kappa}B$ (TNF-${\alpha}$) as well as their main regulatory genes and products such as inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and TNF-${\alpha}$ in LPS-stimulated BV2 microglial cells. Additionally, shikonin suppressed the LPS-induced DNA-binding activity of nuclear factor-${\kappa}B$ (NF-${\kappa}B$) to regulate the key regulatory genes of the proinflammatory mediators, such as iNOS, COX-2, and TNF-${\alpha}$, accompanied with downregulation of reactive oxygen species (ROS) generation. The results indicate that shikonin may downregulate the expression of proinflammatory genes involved in the synthesis of NO, $PGE_2$, and TNF-${\alpha}$ in LPS-treated BV2 microglial cells by suppressing ROS and NF-${\kappa}B$. Taken together, our results revealed that shikonin exerts downregulation of proinflammatory mediators by interference the ROS and NF-${\kappa}B$ signaling pathway.
Keywords
Shikonin; Proinflammatory mediators; Reactive oxygen species; Nuclear factor-${\kappa}B$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Huang, W. R., Zhanz, Y. and Tang, X. (2014) Shikonin inhibits the proliferation of human lens epithelial cells by inducing apoptosis through ROS and caspase-dependent pathway. Molecules 19, 7785-7797.   DOI
2 Kawanishi, N., Kato, K., Takahashi, M., Mizokami, T., Otsuka, Y., Imaizumi, A., Shiva, D., Yano, H. and Ssuzuki, K. (2013) Curcumin attenuates oxidative stress following downhill running-induced muscle damage. Biochem. Biophys. Res. Commun. 441, 573-578.   DOI   ScienceOn
3 Kempe, S., Kestler, H., Lasar, A. and Wirth, T. (2005) NF-${\kappa}B$ controls the global pro-inflammatory response in endothelial cells: evidence for the regulation of a pro-atherogenic program. Nucleic Acids Res. 33, 5308-5319.   DOI
4 Kim, S. U., Park, Y. H., Min, J. S., Sun, H. N., Han, Y. H., Hua, J. M., Lee, T. H., Lee, S. R., Chang, K. T., Kang, S. W., Kim, J. M., Yu, D. Y., Lee, S. H. and Lee, D. S. (2013) Peroxiredoxin I is a ROS/p38 MAPK-dependent inducible antioxidant that regulates NF-${\kappa}B$-mediated iNOS induction and microglial activation. J. Neuroimmunol. 259, 26-36.   DOI
5 Korn, S. H., Wouters, E. F., Vos, N. and Janssen-Heininger, Y. M. (2001) Cytokine-induced activation of nuclear factor-kappa B is inhibited by hydrogen peroxide through oxidative inactivation of I${\kappa}B$ kinase. J. Biol. Chem. 276, 35693-35700.   DOI
6 Lee, A. K., Sung, S. H., Kim, Y. C. and Kim, S. G. (2003) Inhibition of lipopolysaccharide-inducible nitric oxide synthase, TNF-$\alpha$ and COX-2 expression by sauchinone effects on I${\kappa}B$$\alpha$ phosphorylation, C/EBP and AP-1 activation. Br. J. Pharmacol. 139, 11-20.   DOI
7 Lee, C. C., Wang, C. N., Lai, Y. T., Kang, J. J., Liao, J. W., Chiang, B. L., Chen, H. C. and Cheng, Y. W. (2010) Shikonin inhibits maturation of bone marrow-derived dendritic cells and suppresses allergic airway inflammation in a murine model of asthma. Br. J. Pharmacol. 161, 1496-1511.   DOI
8 Li, T., Yan, F., Wang, R., Zhou, H. and Liu, L. (2013) Shikonin suppresses human T lymphocyte activation through inhibition of IKK$\beta$ activity and JNK phosphorylation. Evid. Based Complement. Alternat. Med. 2013, 379536.
9 Liang, D., Sun, Y., Shen, Y., Li, F., Song, X., Zhou, E., Zhao, F., Liu, Z., Fu, Y., Guo, M., Zhang, N., Yang, Z. and Cao, Y. (2013) Shikonin exerts anti-inflammatory effects in a murine model of lipopolysaccharide-induced acute lung injury by inhibiting the nuclear factorkappaB signaling pathway. Int. Immunopharmacol. 16, 475-480.   DOI
10 Lipsky, P. E. (1999) The clinical potential of cyclooxygenase-2-specific inhibitor. Am. J. Med. 106, 51S-57S.   DOI
11 Macmicking, J., Xie, Q. W. and Nathan, C. (1997) Nitric oxide and macrophage function. Annu. Rev. Immunol. 15, 323-350.   DOI
12 Maqbool, A., Lattke, M., Wirth, T. and Baumann, B. (2013) Sustained, neuron-specific IKK/NF-${\kappa}B$ activation generates a selective neuroinflammatory response promoting local neurodegeneration with aging. Mol. Neurodegener. 8, 40.   DOI
13 Murakami, A. and Ohigashi, H. (2007) Targeting NOX, INOS and COX- 2 in inflammatory cells: chemoprevention using food phytochemicals. Int. J. Cancer 121, 2357-2363.   DOI
14 Nathan, C. and Xie, Q. W. (1994) Nitric oxide synthases: roles, tolls, and controls. Cell 78, 915-918.   DOI
15 Surh, Y. J., Chun, K. S., Cha, H. H., Han, S. S., Keum, Y. S., Park, K. K. and Lee, S. S. (2001) Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: downregulations of COX-2 and iNOS through suppression of NF-${\kappa}B$ activation. Mutat. Res. 480-481, 243-268.   DOI   ScienceOn
16 Qin L. and Crews, F. T. (2012) NADPH oxidase and reactive oxygen species contribute to alcohol-induced microglial activation and neurodegeneration. J. Neuroinflammation 9, 5.   DOI
17 Silva, L. C., Ortigosa, L. C. and Benard, G. (2010) Anti-TNF-$\alpha$ agents in the treatment of immune-mediated inflammatory diseases: mechanisms of action and pitfalls. Immunotherapy 2, 817-833.   DOI
18 Siomek, A. (2012) NF-${\kappa}B$ signaling pathway and free radical impact. Acta Biochim. Pol. 59, 323-331.
19 Tracey, K. J. and Cerami, A. (1994) Tumor necrosis factor: a pleiotropic cytokine and therapeutic target. Annu. Rev. Med. 45, 491-503.   DOI
20 Wang, L., Li, Z., Zhang, X., Wang, S., Zhu, C., Miao, J., Chen, L., Cui, L. and Qiao, H. (2014) Protective effect of shikonin in experimental ischemic stroke: attenuated TLR4, p-p38MAPK, NF-${\kappa}B$, TNF-$\alpha$ and MMP-9 expression, up-regulated claudin-5 expression, ameliorated BBB permeability. Neurochem. Res. 39, 97-106.   DOI
21 Wu, H., Xie, J., Pan, Q., Wang, B., Hu, D. and Hu, X. (2013) Anticancer agent shikonin is an incomplete inducer of cancer drug resistance. PLoS One 8, e52706.   DOI
22 Xuan, Y. and Hu, X. (2009) Naturally-occurring shikonin analogues-a class of necroptotic inducers that circumvent cancer drug resistance. Cancer Lett. 274, 233-242.   DOI   ScienceOn
23 Zhao, B. (2005) Nitric oxide in neurodegenerative diseases. Front. Biosci. 10, 454-461.   DOI
24 Yang, J. T., Li, Z. L., Wu, J. Y., Lu, F. J. and Chen, C. H. (2014a) An oxidative stress mechanism of shikonin in human glioma cells. PLoS One 9, e94180.   DOI
25 Yang, Y., Wang, J., Yang, Q., Wu, S., Yang, Z., Zhu, H., Zheng, M., Liu, W., Wu, W., He, J. and Chen, Z. (2014b) Shikonin inhibits the lipopolysaccharide-induced release of HMGB1 in RAW264.7 cells via IFN and NF-${\kappa}B$ signaling pathways. Int. Immunopharmacol. 19, 81-87.   DOI
26 Zhang, F. L., Wang, P., Liu, Y. H., Liu, L. B., Liu, X. B., Li, Z. and Xue, Y. X. (2013) Topoisomerase I inhibitors, shikonin and topotecan, inhibit growth and induce apoptosis of glioma cells and glioma stem cells. PLoS One 8, e81815.   DOI
27 Zikaki, K., Aggeli, I. K., Gaitanaki, C. and Beis, I. (2014) Curcumin induces the apoptotic intrinsic pathway via upregulation of reactive oxygen species and JNKs in H9c2 cardiac myoblasts. Apoptosis 19, 958-974.   DOI
28 Block, M. L., Zecca, L. and Hong, J. S. (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanism. Nat. Rev. Neurosci. 8, 57-69.   DOI
29 Andúar, I., Rís, J. L., Giner, R. M. and Recio, M. C. (2013) Shikonin promotes intestinal wound healing in vitro via induction of TGF-$\beta$ release in IEC-18 cells. Eur. J. Pharm. Sci. 49, 637-641.   DOI
30 Block, M. L. and Hong, J. S. (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog. Neurobiol. 76, 77-98.   DOI
31 Cimino, P. J., Keene, C. D., Breyer, R. M., Montine, K. S. and Montine, T. J. (2008) Therapeutic targets in prostaglandin E2 signaling for neurologic disease. Curr. Med. Chem. 15, 1863-1869.   DOI
32 Bonizzi, G., Piette, J., Schoonbroodt, S., Greimers, R., Havard, L., Merville, M. P. and Bours, V. (1999) Reactive oxygen intermediatedependent NF-${\kappa}B$ activation by interleukin-1$\beta$ requires 5-lipoxygenase or NADPH oxidase activity. Mol. Cell. Biol. 19, 1950-1960.   DOI
33 Camandola, S. and Mattson, M. P. (2007) NF-${\kappa}B$ as a therapeutic target in neurodegenerative disease. Expert Opin. Ther. Targets 11, 123-132.   DOI
34 Cho, Y. H., Lee, C. H. and Kim, S. G. (2003) Potentiation of lipopolysaccharide- inducible cyclooxygenase 2 expression by C2-ceramide via c-Jun N-terminal kinase-mediated activation of CCAAT/enhancer binding protein beta in macrophages. Mol. Pharmacol. 63, 512-523.   DOI
35 Doherty, G. H. (2011) Nitric oxide in neurodegeneration: potential benefits of non-steroidal anti-inflammatories. Neurosci. Bull. 27, 366-382.   DOI
36 Duffield, J. S. (2003) The inflammatory macrophage: a story of Jekyll and Hyde. Clin. Sci. 104, 27-38.   DOI
37 Gonźlez-scarano, F. and Baltuch, G. (1999) Microglia as mediators of inflammatory degenerative diseases. Annu. Rev. Neurosci. 22, 219-240.   DOI
38 Hoherl, K., Dreher, F., Kurtz, A. and Bucher, M. (2002) Cyclooxygenase- 2 inhibition attenuates lipopolysaccharide-induced cardiovascular failure. Hypertention 40, 947-953.   DOI