• 제목/요약/키워드: tumor necrosis factor-a

Search Result 1,876, Processing Time 0.059 seconds

Inflammatory cytokines in midbrain periaqueductal gray contribute to diabetic induced pain hypersensitivity through phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway

  • Guo, Mochi;Jiang, Zongming;Chen, Yonghao;Wang, Fei;Wang, Zhifeng
    • The Korean Journal of Pain
    • /
    • v.34 no.2
    • /
    • pp.176-184
    • /
    • 2021
  • Background: Diabetes-related neuropathic pain frequently occurs, and the underpinning mechanism remains elusive. The periaqueductal gray (PAG) exhibits descending inhibitory effects on central pain transmission. The current work aimed to examine whether inflammatory cytokines regulate mechanical allodynia and thermal hyperalgesia induced by diabetes through the phosphoinositide 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) pathway in the PAG. Methods: Streptozotocin (STZ) was administered intraperitoneally to mimic allodynia and hyperalgesia evoked by diabetes in rats. Behavioral assays were carried out for determining mechanical pain and thermal hypersensitivity. Immunoblot and ELISA were performed to examine PAG protein amounts of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), as well as their corresponding receptors in STZ rats, and the expression of PI3K/protein kinase B (Akt)/mTOR signaling effectors. Results: Increased PAG p-PI3K/p-Akt/p-mTOR protein amounts were observed in STZ-induced animals, a PI3K-mTOR pathway inhibition in the PAG attenuated neuropathic pain responses. Moreover, the PAG concentrations of IL-1β, IL-6, and TNF-α and their receptors (namely, IL-1R, IL-6R, and tumor necrosis factor receptor [TNFR] subtype TNFR1, respectively) were increased in the STZ rats. Additionally, inhibiting IL-1R, IL-6R, and TNFR1 ameliorated mechanical allodynia and thermal hyperalgesia in STZ rats, alongside the downregulation of PI3K-mTOR signaling. Conclusions: Overall, the current study suggests that upregulated proinflammatory cytokines and their receptors in the PAG activate PI3K-mTOR signaling, thereby producing a de-inhibition effect on descending pathways in modulating pain transmission, and eventually contributing to neuropathic pain.

Fucoidan Increases Porcine Neutrophil Extracellular Trap Formation through TNF-α from Peripheral Blood Mononuclear Cells

  • Changwoo Nahm;Yoonhoi Koo;Taesik Yun;Hakhyun Kim;Byeong-Teck Kang;Mhan-Pyo Yang
    • Journal of Veterinary Clinics
    • /
    • v.40 no.3
    • /
    • pp.175-181
    • /
    • 2023
  • Fucoidan extracted from brown seaweed has a variety of biological activities. Neutrophil extracellular traps (NETs) formation is an immune response for the invasion of pathogens. Neutrophils release granule protein and chromatin that form extracellular fibers that bind microbes. These NETs degrade virulence factors and kill bacteria. The aim of this study was to investigate the effect of fucoidan on NET formation of porcine peripheral blood polymorphonuclear cells (PMNs). The NET formation was determined by fluorescence emission of propidium iodide (PI) in PMNs by a fluorescence microplate reader. The production of tumor necrosis factor (TNF)-α from peripheral blood mononuclear cells (PBMCs) was measured by ELISA method. Fucoidan itself did not show any direct effect on NET formation. However, NET formation of PMNs was increased by the culture supernatant from PBMCs treated with fucoidan. The NET formation of PMNs were also enhanced by treatment with recombinant porcine (rp) TNF-α. The ability of culture supernatant from PBMCs treated with fucoidan to increase the NET formation of PMNs was inhibited by addition of goat anti-rp TNF-α polyclonal antibody (pAb) (IgG) prior to the culture. The increase of NET formation by rp TNF-α was also inhibited by goat anti-rp TNF-α pAb (IgG). The level of TNF-α in culture supernatant from PBMCs was increased by treatment with fucoidan. These results suggest that fucoidan increases porcine NET formation, which is mediated by TNF-α produced from PBMCs.

Enhancement of phagocytosis and cytotoxicity in macrophages by tumor-derived IL-18 stimulation

  • Xu, Henan;Toyota, Naoka;Xing, Yanjiang;Fujita, Yuuki;Huang, Zhijun;Touma, Maki;Wu, Qiong;Sugimoto, Kenkichi
    • BMB Reports
    • /
    • v.47 no.5
    • /
    • pp.286-291
    • /
    • 2014
  • Inoculation of mice with the murine NFSA cell line caused the formation of large tumors with necrotic tumor cores. FACS analysis revealed accumulations of $CD11b^+$ cells in the tumors. Microarray analysis indicated that the NFSA cells expressed a high level of the pro-inflammatory factor interleukin-18 (il-18), which is known to play a critical role in macrophages. However, little is known about the physiological function of IL-18-stimulated macrophages. Here, we provide direct evidence that IL-18 enhances the phagocytosis of RAW264 cells and peritoneal macrophages, accompanied by the increased expression of tumor necrosis factor (tnf-${\alpha}$), interleukin-6 (il-6) and inducible nitric oxide synthase (Nos2). IL-18-stimulated RAW264 cells showed an enhanced cytotoxicity to endothelial F-2 cells via direct cell-to-cell interaction and the secretion of soluble mediators. Taken together, our results demonstrate that tumor-derived IL-18 plays an important role in the phagocytosis of macrophages and that IL-18-stimulated macrophages may damage tumor endothelial cells.

Serum homocysteine and tumor necrosis factor-alpha levels after intravenous gammaglobulin treatment in patients with Kawasaki disease (가와사키병 환자에서 면역글로불린 투여 전 후 호모시스테인, tumor necrosis factor-alpha 혈중 농도에 대한 연구 - 가와사키병 환아에서 호모시스테인, TNF-α 혈중 농도 비교 분석 -)

  • Cha, Jung Hwa;Hong, Young Mi
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.10
    • /
    • pp.1093-1099
    • /
    • 2006
  • Purpose : Homocysteine is a strong and independent risk factor for cardiovascular disease. The deleterious effects of homocysteine included endothelial dysfunction, arterial intimal-medial thickening, wall stiffness and procoagulant activity. However, the precise mechanism responsible for homocysteine release in children with coronary artery disease is still unknown. The purpose of this study was to investigate serum homocysteine and tumor necrosis $factor(TNF)-{\alpha}$ levels and identify whether these levels had any association with the development of coronary artery lesions in Kawasaki disease(KD). Methods : Serum homocysteine and $TNF-{\alpha}$ levels were measured in 24 KD patients(group 1, eight patients with normal coronary artery; group 2, 16 patients with coronary artery lesions) and 21 controls(group 3, 10 afebrile controls; group 4, 11 febrile controls). Blood samples were drawn from each study group before and after intravenous immunoglobulin(IVIG) therapy and in the convalescent stage. Results : The homocysteine levels before IVIG therapy were significantly higher in group 1 than in group 3, and in group 2 than in group 3 and 4. The $TNF-{\alpha}$ levels before IVIG therapy were significantly higher in group 2 than group 3 and 4. Serum homocysteine and $TNF-{\alpha}$ levels were highest in group 2 before IVIG therapy. In the acute KD patients, serum homocysteine levels correlated significantly with $TNF-{\alpha}$ levels. Conclusion : The increased serum homocysteine levels in the acute stage increase the susceptibility to coronary arterial lesions in KD. $TNF-{\alpha}$ may also play an important role in the formation of coronary arterial lesions in KD.

Tumor Necrosis Factor-alpha Gene Polymorphism (C-850T) in Korean Patients with Preeclampsia

  • Lim, Ji-Hyae;Kim, Shin-Young;Park, So-Yeon;Han, Ho-Won;Yang, Jae-Hyug;Kim, Moon-Young;Park, Hyun-Young;Lee, Kwang-Soo;Kim, Young-Ju;Ryu, Hyun-Mee
    • Journal of Genetic Medicine
    • /
    • v.6 no.2
    • /
    • pp.155-160
    • /
    • 2009
  • Purpose: Preeclampsia is a multisystem human pregnancy-specific disorder. The pathophysiology of preeclampsia is linked with over-stimulation of inflammatory cytokines by placental ischemia via reduced uterine perfusion pressure during pregnancy. Although an increase in tumor necrosis factor (TNF)-alpha has been reported in preeclamptic women, there is little evidence of a relationship between TNF-alpha gene variations and preeclampsia. In this study, we identified a single-nucleotide polymorphism (SNP), C-850T, in the TNF-alpha gene promoter region in Korean preeclamptic women and investigated the association between this SNP and the development of preeclampsia. Materials and Methods: This polymorphism was analyzed in peripheral blood samples from 198 preeclamptic pregnancies and 194 normotensive pregnancies using a SNapShot kit and an ABI Prism 3100 Genetic analyzer. Results: Genotypes and allele frequencies for C-850T did not differ between preeclamptic and normotensive pregnancies. The distributions of genotypes (CC, CT and TT) were 74.3%, 22.2% and 3.5%, respectively, in preeclamptic pregnancies, and 71.6%, 25.8% and 2.6%, respectively, in normotensive pregnancies. The frequencies of the C and T alleles were 0.85 and 0.15 in preeclamptic pregnancies and 0.84 and 0.16 in normotensive pregnancies, respectively. There was no increased risk of preeclampsia in subjects with the CT (OR, 0.83; P=0.44) or TT genotypes (OR, 1.32; P=0.64). Conclusion: We found no differences in the genotypes or allele frequencies of the TNF-alpha gene polymorphism between preeclamptic and normotensive pregnancies. This study suggests that the TNF-alpha gene polymorphism may be not associated with the development of preeclampsia in pregnant Korean women.

  • PDF

The Anti-inflammatory Mechanism of Xanthoangelol E is Through the Suppression of NF-${\kappa}B$/Caspase-1 Activation in LPS-stimulated Mouse Peritoneal Macrophage

  • Seoa, Jung-Ho;Kim, Su-Jin
    • Biomedical Science Letters
    • /
    • v.18 no.4
    • /
    • pp.345-354
    • /
    • 2012
  • Angelica keiskei has exhibited numerous pharmacological effects including antitumor, antimetastatic, and antidiabetic effects. However, the anti-inflammatory effects and mechanisms employed by xanthoangelol E isolated from Angelica keiskei are incompletely understood. In this study, we attempted to determine the effects of Xanthoangelol E on the lipopolysaccharide (LPS)-stimulated mouse peritoneal macrophage. The findings of this study demonstrated that xanthoangelol E inhibited the production of tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6, and prostaglandin $E_2$ ($PGE_2$). Xanthoangelol E inhibited the enhanced levels of cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) caused by LPS. Additionally, we showed that the anti-inflammatory effect of xanthoangelol E is through the regulation of the activation of nuclear factor (NF)-${\kappa}B$ and caspase-1. These results provide novel insights into the pharmacological actions of xanthoangelol E as a potential candidate for the development of new drugs to treat inflammatory diseases.

Effect of Prunella vulgaris Labiatae Extract on Innate Immune Cells and Anti-metastatic Effect in Mice

  • Lee, Jun-Beom;Kang, Tae-Bong;Choi, Sang-Hoon;Lee, Ui-Young;Kim, Ae-Jung;Jeong, Chang-Jin;Lee, Hak-Cheon;Cho, Yong-Sun;Won, Jong-Gun;Lim, Jong-Cheol;Yoon, Taek-Joon
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.218-222
    • /
    • 2009
  • Ability of water extract from Prunella vulgaris Labiatae to stimulate immune system and inhibit tumor metastasis in mice was assessed. In experimental lung metastasis, prophylactic intravenous (i.v.) administration of water extract from P. vulgaris significantly inhibited lung metastasis in a dose-dependant manner. Peritoneal macrophages stimulated with P. vulgaris produced various cytokines such as tumor necrosis factor (TNF)-$\alpha$ and interlukin (IL)-12 as well as induced tumoricidal activity. In an assay for natural killer (NK) cell activity, i.v. administration of P. vulgaris significantly augmented NK cytotoxicity. The depletion of NK cells by injection of rabbit anti-asialo GM1 serum abolished the inhibitory effect of P. vulgaris on lung metastasis of colon26-M3.1 cells. These data demonstrate that P. vulgaris activate innate immune system to inhibit the growth of foreign materials including tumor cells in mice.

Effect of Indomethacin on the Lipopolysaccharide-induced Production of Cytokines in Tumor-bearing Mice (암유발 생쥐에서 리포폴리사카라이드에 의해 유도된 사이토카인이 생산에 미치는 인도메타신의 영향)

  • 채병숙
    • YAKHAK HOEJI
    • /
    • v.45 no.6
    • /
    • pp.715-723
    • /
    • 2001
  • Indomethacin is well known as a prostaglandin (PG) E$_2$ synthetase inhibitor which has antipyretic and anti-inflammatory effects and reduces the risk of cancer Growing tumors greatly induce hypersensitive responses to lipopolysaccharide (LPS). Thus, this study was investigated the effect of indomethacin on the LPS-induced production of cytokines in sarcoma-bearing ICR mice. Indomethacin at doses of 5mg/kg was administered orally 30 minutes before i.p. injection of LPS (8 mg/kg) 5 times for 7 days. LPS remarkedly increased tumor necrosis factor (TNF)-$\alpha$ and interleukin (IL)-1$\beta$, levels in both serum and splenic supernatants compared with those in controls, while indomethacin significantly reduced the LPS-increased levels of IL-1$\beta$, in both serum and supernatants. LPS significantly enhanced IL-2 levels in serum and interferon (IFN)-${\gamma}$ levels in supernatants, whereas indomethacin did not affect the LPS-increased levels of IL-2 and IFN-${\gamma}$. These data, therefore, indicate that indomethacin may attenuate the pathogenesis of IL-1$\beta$, induced by LPS and maintain the tumoricidal cellular immune effects by LPS-increased production of IL- 2 and IFN-${\gamma}$ in tumor-bearing state.

  • PDF

Inhibitory Effect of Salvia officinalis on the Inflammatory Cytokines and Inducible Nitric Oxide Synthasis in Murine Macrophage RAW264.7 (RAW 264.7 Cell에서 세이지에 의한 염증성 Cytokine 및 iNOS억제 효과)

  • 현은아;이혜자;윤원종;박수영;강희경;김세재;유은숙
    • YAKHAK HOEJI
    • /
    • v.48 no.2
    • /
    • pp.159-164
    • /
    • 2004
  • Primary pro-inflammatory cytokines are a trio: tumor necrosis- $\alpha$ (TNF-$\alpha$), interleukine-$\beta$ (IL-$\beta$), and interleukine-6 (IL-6). These cytokines initiate and regulate the acute-phase inflammatory response during infection, trauma, or stress and appear to play an important role in the immune process. Nitric oxide (NO) is a multi-functional mediator, which plays an important role in regulating various biological functions in vivo. NO production by inducible nitric oxide synthase (iNOS) in macrophages is essential for the defense mechanisms against microorganisms and tumor cells. However, over-expression of iNOS by various stimuli, resulting in over-production of NO, contributes to the pathogenesis of septic shock and some inflammatory and auto-immune disease. Solvent fractions of sage ( Salvia officinalis L.), which is cultivated in Jeju-Do, was assayed for their effects on TNF-$\alpha$ and IL-6 production in LPS-stimulated RAW 264.7 macrophages. Hexane and ethylacetate (EtOAc) fraction of sage inhibited the protein and mRNA expression of TNF-$\alpha$ and IL-6 in LPS stimulated RAW 264.7 cells at the concentration of 100 $\mu\textrm{g}$/$m\ell$. Also, incubation of RAW 264.7 cells with the fraction of hexane or EtOAc (50 $\mu\textrm{g}$/$m\ell$) inhibited the LPS induced nitrite accumulation and the LPS/IFN-${\gamma}$ induced iNOS protein. And this inhibition of iNOS protein is concordant with the inhibition of iNOS mRNA expression. Above results suggest that extract of sage may have anti-inflammatory activity through the inhibition of pro-inflammatory cytokines (TNF-$\alpha$, IL-1$\beta$, IL-6), iNOS and NO.

Skin Care Effects of Green Tea (녹차의 피부보호효과)

  • Lee, Byeong-Gon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.4 s.54
    • /
    • pp.311-321
    • /
    • 2005
  • Tea (Camellia sinenis) is a popular beverage consumed worldwide. Since green tea, mainly consumed in Asia, has various biological activities, green tea components became one of the most favorite candidates as a functional materials for cosmetics and functional foods. The biological activities of green tea for skin cue have been ranged from protection of epidermal cells to the stimulation of extracellular matrix (ECM) biosynthesis. Green tea polyphenols (GTPs), which are active ingredients of green tea, possess anti-inflammatory, anti-carcinogenic and immune potentiation properties as well as antioxidant. They also modulate intracellular signal transduction pathways. GTPs decrease ultraviolet (UV)-induced oxidative stress, thus suppress mitogen-activated protein kinase (MAPK) pathway and apoptosis in keratinocytes. In addition, GTPs prevent the Induction of inflammatory mediators, such as cyclooxygenase-2 (COX-2), interleukin-8 (IL-8), and vascular endothelial growth factor (VEGF) by tumor necrosis factor alpha $(TNF{\alpha})$ or chemical treatment in keratinocytes. GTPs treatment protects from chemical-or UV-induced skin tumor incidence in animal experiment. Besides, GTPs stimulate keratinocyte differentiation and proliferation of normal and aged epidermal cells, resectively, and suppress matrix metalloproteinases (MMPs) release. According to the progress of formulation study, green tea components will be guaranteed materials for the more effective skin cue products.