• Title/Summary/Keyword: tumor necrosis factor α

Search Result 513, Processing Time 0.037 seconds

3,3',4,4'-tetrachlorobiphenyl (PCB77) enhances human Kv1.3 channel currents and alters cytokine production

  • Jong-Hui Kim;Soobeen Hwang;Seo-In Park;Hyo-Ji Lee;Yu-Jin Jung;Su-Hyun Jo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.4
    • /
    • pp.323-333
    • /
    • 2024
  • Polychlorinated biphenyls (PCBs) were once used throughout various industries; however, because of their persistence in the environment, exposure remains a global threat to the environment and human health. The Kv1.3 and Kv1.5 channels have been implicated in the immunotoxicity and cardiotoxicity of PCBs, respectively. We determined whether 3,3',4,4'-tetrachlorobiphenyl (PCB77), a dioxin-like PCB, alters human Kv1.3 and Kv1.5 currents using the Xenopus oocyte expression system. Exposure to 10 nM PCB77 for 15 min enhanced the Kv1.3 current by approximately 30.6%, whereas PCB77 did not affect the Kv1.5 current at concentrations up to 10 nM. This increase in the Kv1.3 current was associated with slower activation and inactivation kinetics as well as right-shifting of the steady-state activation curve. Pretreatment with PCB77 significantly suppressed tumor necrosis factor-α and interleukin-10 production in lipopolysaccharide-stimulated Raw264.7 macrophages. Overall, these data suggest that acute exposure to trace concentrations of PCB77 impairs immune function, possibly by enhancing Kv1.3 currents.

Effect of onion (Allium cepa L.) peel extract on natural killer cell and cytokines in a randomized, double-blind, placebo-controlled trial

  • Hyunji Cho;Sohui Kim;Sung hyen Lee;Yongsoon Park
    • Nutrition Research and Practice
    • /
    • v.18 no.1
    • /
    • pp.33-45
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: Onion, particularly onion peel, is a quercetin-rich food with, anti-inflammatory and immunomodulatory effects. However, the effect of onion peel extract (OPE) in humans is unclear. Thus, the present study aimed to investigate whether OPE improves natural killer (NK) cell activity and cytokine concentration in a randomized double-blind placebo-controlled trial. SUBJECTS/METHODS: Eighty participants aged 19-64 yrs old with a white blood cell count of 4,000-10,000 cells/µL, symptoms of upper respiratory infection at least once within the previous 12 mon, and perceived stress scale (PSS) over 14 were included. Participants were randomly assigned to take either 1,000 mg/day OPE or a placebo for 8 weeks. RESULTS: Compliance were 87.4 ± 8.6% and 86.9 ± 79.0% in OPE and placebo groups. Compared to the placebo, OPE supplementation improved "Hoarseness" (P = 0.038) of the Wisconsin Upper Respiratory Symptom Survey (WURSS)-21 symptom, and stress scores (P = 0.001; 0.021) of PSS. Supplementation of OPE had no significant effect on NK cell activity and concentrations of cytokines such as interleukin (IL)-2, IL-6, IL-12, IL-1β, interferon-γ, and tumor necrosis factor-α. At baseline, the WURSS-21 symptom and PSS score (P = 0.024; 0.026) were higher in the OPE group than the placebo group. Among participants with higher than median WURSS-21 symptom score, OPE supplementation increased NK cell activity (P = 0.038). Supplementation of OPE had no significant effects on safety measurements and adverse events. CONCLUSIONS: The present study suggested that OPE supplementation improves NK cell activity in participants with moderate upper respiratory symptoms without any significant adverse effects.

Anti-oxidant and immune enhancement effects of Artemisia argyi H. fermented with lactic acid bacteria

  • Ji Yun Lee;Ji Hyun Kim;Ji Myung Choi;Hyemee Kim;Weon Taek Seo;Eun Ju Cho;Hyun Young Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.492-502
    • /
    • 2023
  • This study investigated the antioxidant and immune enhancement activities of Artemisia argyi H. fermented by Lactobacillus plantarum. The fermented A. argyi H. ethanol extract increased scavenging activities of 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+), hydroxyl (·OH), and superoxide (O2-) radicals. Particularly, the ethanol extract of fermented A. argyi H. exhibited higher ·OH and O2- radical scavenging activities, compared with DPPH and ABTS+ radical scavenging activities. To evaluate the immune enhancement effects of the fermented A. argyi H., mice were fed a normal diet supplemented the fermented A. argyi H. at concentrations of 1%, 2%, and 5%, respectively. The supplementation of fermented A. argyi H. dose-dependently increased splenocyte proliferation. In addition, mice fed with 5% fermented A. argyi H. showed enhanced proliferation of T-cells and B-cells, along with increased levels of interferon-γ, interleukin-10, and tumor necrosis factor-α, compared to the normal group. Furthermore, mice fed with fermented A. argyi H. exhibited an increase in prominent probiotics such as Akkermansia muciniphila and Lactobacillus in gut microbiota, compared to the normal group. This study suggests that fermented A. argyi H. with Lactobacillus plantarum could be used as a dietary antioxidant and immune enhancement agent.

Screening of Anti-microbial and Anti-inflammatory Activity of Common Stalked Barnacle Pollicipes mitella Extract (거북손(Pollicipes mitella) 추출물의 항균 활성 및 항염증 활성 탐색)

  • Ho Sung Moon;In-Ah Lee;Jung-Kil Seo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.57 no.3
    • /
    • pp.216-226
    • /
    • 2024
  • This study screened the antimicrobial and anti-inflammatory activities of three extracts [1% acetic acid (HAc), distilled water (D.W.), and ethanol] from the common stalked barnacle Pollicipes mitella. Among the extracts, the 1% HAc extract showed the strongest antibacterial activity against several bacteria, but exhibited no activity against Candida albicans. To improve the degree of separation of the 1% HAc extract, solid-phase extraction was performed using a C18 cartridge with three solvents (D.W., 60A, and 100A). The 1% HAc 60A eluate showed the strongest antibacterial activity and enzyme, salt, and temperature stability, with no hemolytic activity. In addition, strong DNA-binding ability but no bacterial membrane permeability was observed. These results indicate that the P. mitella 1% HAc 60A eluate may contain antibacterial organic compounds that target intracellular components but not bacterial membranes. In addition, the 1% HAc 60A eluate exhibited potent inhibitory activity to reduce the production of inflammatory mediators (nitric oxide and prostaglandin E2) and pro-inflammatory cytokines (tumor necrosis factor-α, interleukin (IL)-6, and IL-1β) with no cytotoxicity. Therefore, the P. mitella 1% HAc 60A eluate has anti-inflammatory activity. Collectively, our results suggest that the P. mitella 1% HAc 60A eluate can be used as a bioactive source with antibacterial and anti-inflammatory activities.

Sage (Salvia officinalis) alleviates trazadone induced rat cardiotoxicity mediated via modulation of autophagy and oxidative stress

  • Marwa Abdel-Samad Al-Gholam;Heba Moustafa Rasheed Hathout;Marwa Mohamed Safwat;Asmaa Saeed Essawy
    • Anatomy and Cell Biology
    • /
    • v.57 no.2
    • /
    • pp.256-270
    • /
    • 2024
  • The antidepressant drug trazodone (TRZ) is commonly used for treating depression, anxiety, and insomnia, however, it causes cardiotoxicity, which is one of its limitations. The objective of this work was to investigate the impact of sage (Salvia officinalis) in rats against cardiotoxicity induced by TRZ and to investigate the mechanisms involved in its cardio-protective properties through autophagy and oxidative stress. Fifty male albino rats were split randomly into five experimental groups: control group, sage oil group (100 mg/kg), TRZ group (20 mg/kg), protective group, and curative group. Cardiac function biomarkers (aspartate aminotransferase [AST], creatine kinase-MB [CK-MB], and cardiac troponin T [cTnI]) were assessed in serum. Oxidative stress and inflammatory biomarkers in cardiac tissue (total antioxidant capacity, malondialdehyde, and tumor necrosis factor-α) were evaluated. Heart tissues were subjected to histological, immunohistochemical, and ultrastructural evaluations. DNA damage also evaluated. Significant rise in the levels of AST, CK-MB, and cTnI were observed with enhanced autophagy along with marked histopathological changes in the form of interrupted muscle fibers with wide interstitial spaces with areas of hemorrhage and extravasated blood and interstitial mononuclear cellular infiltration in TRZ group. DNA damage was also significantly increased in TRZ group. However, administration of sage in both protective and curative groups show marked improvement of the cardiac alterations. In conclusion, sage ameliorated the alterations in the heart induced by trazadone through modulation of autophagy and oxidative stress.

Biological properties of fermented milk with fortified whey protein

  • Ki Whan Kim;Seok Han Ra;Gereltuya Renchinkhand;Woo Jin Ki;Myoung Soo Nam;Woan Sub Kim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.2
    • /
    • pp.281-294
    • /
    • 2023
  • As a byproduct obtained from cheese manufacture, whey protein was developed as a functional food that contains multi-functional proteins. In this study, the biochemical activity of fermented milk prepared by fortifying whey protein with excellent physiological activity was investigated. Immunoglobulin (IgG) content was higher in 10% fortified whey protein fermented milk than in the control. The viable cell counts were 20% higher in the fermented milk with 10% fortified whey protein than in the control group. The antibacterial effect of 10% fortified whey protein fermented milk compared to the control group was shown to be effective against four pathogenic microorganisms, Escherichia coli (KCTC1039), Pseudomonas aeruginosa 530, Salmonela Typhimurium (KCTC3216), and Staphylococcus aureus (KCTC1621). The antioxidant effect by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activities wasincreased two-fold in 10% fortified whey protein fermented milk compared to the control. The 10% fortified whey protein fermented milk inhibited the expression of the inflammatory cytokines (interleukin [IL]-6, tumor necrosis factor [TNF]-α, and induced nitric oxide synthase [iNOS]) in a concentration-dependent manner. In a piglets feeding test, the weight gain with 10% fortified whey protein fermented milk was increased by 18% compared to the control group, and no diarrhea symptoms appeared. Our results clearly demonstrated that 10% fortified whey protein fermented milk could be a useful functional ingredient for improving health.

Antioxidant, antibacterial, and antiinflammatory effects of yoghurt made with vitamin tree (Hippophae rhamnoides L.) fruit powder

  • Byung Bae Park;Gereltuya Renchinkhand;Woo Jin Ki;Jong Woo Choi;Myoung Soo Nam
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.905-917
    • /
    • 2022
  • It is well known that the fruit of the vitamin tree (Hippophae rhamnoides L.) provides excellent anti-diabetic, antibacterial, immune regulation, anti-inflammatory, and anti-aging effects. In some countries including Europe the fruit has been added to certain foods to develop functional foods. The present research was carried out to elucidate the biological function of vitamin tree fruit powder added to fermented milk. It was found that there was an antioxidant effect of yoghurt made with vitamin tree fruit powder, and this effect was greater with increased incubation time and amount of vitamin powder, as shown by 1,1-diphenyl2-picrylhydrazyl (DPPH) and 2,2-anziobis (3-ehtylbenzothiazoline-6-sulfonic aicd) (ABTS) radical scavenging activities. The antibacterial effect of yoghurt containing vitamin tree fruit powder was shown to be effective against four pathogenic microorganisms, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonela Typhimurium. In particular, yoghurt supplemented with 5% of vitamin tree fruit powder showed the best antibacterial effect. The yogurt containing the vitamin tree fruit powder significantly inhibited the expression of the anti-inflammatory cytokines interleukin (IL)-6 (yogurt [Y] + Hippophae rhamnoides L. powder [HP] and yogurt containing 5% Hippophae rhamnoides L. powder [HPY]) and IL-1β (HP, Y + HP and HPY) in a concentration-dependent manner among tumor necrosis factor (TNF)-α, IL-6, IL-1, and induced nitric oxide synthase (iNOS). Our results clearly demonstrated that vitamin tree fruit powder could be a good functional ingredient for improving health through yoghurt manufactured with vitamin tree.

CLK3 is a Novel Negative Regulator of NF-κB Signaling (NF-κB 신호경로에서 CLK3의 새로운 음성 조절자로서의 기능)

  • Byeol-Eun, Jeon;Chan-Seong, Kwon;Ji-Eun, Lee;Ye-Lin, Woo;Sang-Woo, Kim
    • Journal of Life Science
    • /
    • v.32 no.11
    • /
    • pp.833-840
    • /
    • 2022
  • Chronic inflammation has been shown to be closely associated with tumor development and progression. Nuclear factor kappa B (NF-κB) is composed of a family of five transcription factors. NF-κB signaling plays a crucial role in the inflammatory response and is often found to be dysregulated in various types of cancer, making it an attractive target in cancer therapeutics. In this study, CDC-like kinase 3 (CLK3) was identified as a novel kinase that regulates the NF-κB signaling pathway. Our data demonstrate that CLK3 inhibits the canonical and non-canonical NF-κB pathways. Luciferase assays following the transient or stable expression of CLK3 indicated that this kinase inhibited NF-κB activation mediated by Tumor necrosis factor-alpha (TNFα) and Phorbol 12-myristate 13-acetate (PMA), which are known to activate NF-κB signaling via the canonical pathway. Consistent with data on the ectopic expression of CLK3, CLK3 knockdown using shRNA constructs increased NF-κB activity 1.5-fold upon stimulation with TNFα in HEK293 cells compared with the control cells. Additionally, overexpression of CLK3 suppressed the activation of this signaling pathway induced by NF-κB-inducing kinase (NIK) or CD40, which are well-established activators of the non-canonical pathway. To further examine the negative impact of CLK3 on NF-κB signaling, we performed Western blotting following the TNFα treatment to directly identify the molecular components of the NF-κB pathway that are affected by this kinase. Our results revealed that CLK3 mitigated the phosphorylation/activation of transforming growth factor-α-activated kinase 1 (TAK1), inhibitor of NF-κB kinase alpha/beta (IKKα/α), NF-κB p65 (RelA), NF-κB inhibitor alpha (IκBα), and Extracellular signal-regulated kinase 1/2-Mitogen-activated protein kinase (ERK1/2-MAPK), suggesting that CLK3 inhibits both the NF-κB and MAPK signaling activated by TNFα exposure. Further studies are required to elucidate the mechanism by which CLK3 inhibits the canonical and non-canonical NF-κB pathways. Collectively, these findings reveal CLK3 as a novel negative regulator of NF-κB signaling.

Chest X-ray Findings and Serum Tumor Necrosis Factor-αLevels in Patients with Kawasaki Disease (가와사끼병 환아에서 흉부 X-선 검사의 변화와 혈중 Tumor Necrosis Factor-α에 대한 연구)

  • Kim, Ji Young;Kwon, Jung Hyun;Kim, Kyung Hyo;Yu, Jung Hyun;Hong, Young Mi
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.5
    • /
    • pp.534-538
    • /
    • 2005
  • Purpose : Kawasaki disease(KD) is a multisystemic inflammatory vasculitis of unknown etiology. Many complications other than cardiovascular involvement have been recognized in KD. However, there have been few reports published concerning involvement of the lungs in this disease. The purpose of this study was to examine the relationship between serum TNF-${\alpha}$, the degree of coronary artery dilatation and chest X-ray(CXR) findings. In addition, we have investigated serum anti-Mycoplasma antibody(AMA) titers in patients with KD who have abnormal CXR findings. Methods : Eighty four patients with KD were included in this study(group I; 41 patients with normal CXR fndings, group II; 43 patients with abnormal CXR findings). Serum levels of TNF-${\alpha}$ and AMA titer were measured. Results : We reviewed the CXR findings and clinical courses of 84 patients with Kawasaki disease and found abnormal CXR findings in 43 patients(51.2 percent). Peribronchial cuffing was the most frequent abnormality(22.4 percent). In the group with abnormal CXR findings(group II), a statistical difference was not noted in age, sex, duration of fever, hemoglobin, WBC, platelet, ESR, and CRP levels and incidence of coronary arterial lesions as compared with the group having normal CXR findings(group I). No difference was noted in serum TNF-${\alpha}$ level between group I and group II. 2 patients(12.5 percent) of 16 KD patients with abnormal CXR findings have positive AMA titer(above 1 : 320). Conclusion : Most of the abnormal CXR findings in KD patients were peribronchial cuffing. The abnormal CXR findings in KD patients did not mean severe inflammations. It is difficult to consider that CXR abnormalities are related to coronary arterial lesions. In addition, further study on the relationship between Mycoplasma infection and Kawasaki disease is needed.

Pathophysiological Regulation of Vascular Smooth Muscle Cells by Prostaglandin F2α-dependent Activation of Phospholipase C-β3 (Prostaglandin F2α 의존적 phospholipase C-β3 활성화에 의한 혈관평활근세포의 병태생리 조절 연구)

  • Kang, Ki Ung;Oh, Jun Young;Lee, Yun Ha;Lee, Hye Sun;Jin, Seo Yeon;Bae, Sun Sik
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1516-1522
    • /
    • 2018
  • Atherosclerosis is an obstructive vessel disease mainly caused by chronic arterial inflammation to which the proliferation and migration of vascular smooth muscle cells (VSMCs) is the main pathological response. In the present study, the primary responsible inflammatory cytokine and its signaling pathway was investigated. The proliferation and migration of VSMCs was significantly enhanced by the prostaglandin $F_{2{\alpha}}$ ($PGF_{2{\alpha}}$), while neither was affected by tumor necrosis factor ${\alpha}$. Prostacyclin $I_2$ was seen to enhance the proliferation of VSMCs while simultaneously suppressing their migration. Both prostaglandin $D_2$ and prostaglandin $E_2$ significantly enhanced the migration of VSMCs, however, proliferation was not affected by either of them. The proliferation and migration of VSMCs stimulated by $PGF_{2{\alpha}}$ progressed in a dose-dependent manner; the $EC_{50}$ value of both proliferation and migration was $0.1{\mu}M$. VSMCs highly expressed the phospholipase isoform $C-{\beta}3$ ($PLC-{\beta}3$) while others such as $PLC-{\beta}1$, $PLC-{\beta}2$, and $PLC-{\beta}4$ were not expressed. Inhibition of the PLCs by U73122 completely blocked the $PGF_{2{\alpha}}$-induced migration of VSMCs, and, in addition, silencing $PLC-{\beta}3$ significantly diminished the $PGF_{2{\alpha}}$-induced proliferation and migration of VSMCs. Given these results, we suggest that $PGF_{2{\alpha}}$ plays a crucial role in the proliferation and migration of VSMCs, and activation of $PLC-{\beta}3$ could be involved in their $PGF_{2{\alpha}}$-dependent migration.