DOI QR코드

DOI QR Code

Sage (Salvia officinalis) alleviates trazadone induced rat cardiotoxicity mediated via modulation of autophagy and oxidative stress

  • Received : 2023.09.19
  • Accepted : 2024.02.13
  • Published : 2024.06.30

Abstract

The antidepressant drug trazodone (TRZ) is commonly used for treating depression, anxiety, and insomnia, however, it causes cardiotoxicity, which is one of its limitations. The objective of this work was to investigate the impact of sage (Salvia officinalis) in rats against cardiotoxicity induced by TRZ and to investigate the mechanisms involved in its cardio-protective properties through autophagy and oxidative stress. Fifty male albino rats were split randomly into five experimental groups: control group, sage oil group (100 mg/kg), TRZ group (20 mg/kg), protective group, and curative group. Cardiac function biomarkers (aspartate aminotransferase [AST], creatine kinase-MB [CK-MB], and cardiac troponin T [cTnI]) were assessed in serum. Oxidative stress and inflammatory biomarkers in cardiac tissue (total antioxidant capacity, malondialdehyde, and tumor necrosis factor-α) were evaluated. Heart tissues were subjected to histological, immunohistochemical, and ultrastructural evaluations. DNA damage also evaluated. Significant rise in the levels of AST, CK-MB, and cTnI were observed with enhanced autophagy along with marked histopathological changes in the form of interrupted muscle fibers with wide interstitial spaces with areas of hemorrhage and extravasated blood and interstitial mononuclear cellular infiltration in TRZ group. DNA damage was also significantly increased in TRZ group. However, administration of sage in both protective and curative groups show marked improvement of the cardiac alterations. In conclusion, sage ameliorated the alterations in the heart induced by trazadone through modulation of autophagy and oxidative stress.

Keywords

References

  1. Atli O, Kilic V, Baysal M, Kilic G, Gormus G, Ucarcan S, Korkut B, Ilgin S. Assessment of trazodone-induced cardiotoxicity after repeated doses in rats. Hum Exp Toxicol 2019;38:45-55.  https://doi.org/10.1177/0960327118769717
  2. Miura N, Saito T, Taira T, Umebachi R, Inokuchi S. Risk factors for QT prolongation associated with acute psychotropic drug overdose. Am J Emerg Med 2015;33:142-9.  https://doi.org/10.1016/j.ajem.2014.09.048
  3. Jaffer KY, Chang T, Vanle B, Dang J, Steiner AJ, Loera N, Abdelmesseh M, Danovitch I, Ishak WW. Trazodone for insomnia: a systematic review. Innov Clin Neurosci 2017;14:24-34. 
  4. Xiao B, Hong L, Cai X, Mei S, Zhang P, Shao L. The true colors of autophagy in doxorubicin-induced cardiotoxicity. Oncol Lett 2019;18:2165-72.  https://doi.org/10.3892/ol.2019.10576
  5. Montalvo RN, Doerr V, Min K, Szeto HH, Smuder AJ. Doxorubicin-induced oxidative stress differentially regulates proteolytic signaling in cardiac and skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2020;318:R227-33.  https://doi.org/10.1152/ajpregu.00299.2019
  6. Chun Y, Kim J. Autophagy: an essential degradation program for cellular homeostasis and life. Cells 2018;7:278. 
  7. Cuervo AM, Macian F. Autophagy, nutrition and immunology. Mol Aspects Med 2012;33:2-13.  https://doi.org/10.1016/j.mam.2011.09.001
  8. Noda NN, Inagaki F. Mechanisms of autophagy. Annu Rev Biophys 2015;44:101-22.  https://doi.org/10.1146/annurev-biophys-060414-034248
  9. Lee Y, Kwon I, Jang Y, Song W, Cosio-Lima LM, Roltsch MH. Potential signaling pathways of acute endurance exercise-induced cardiac autophagy and mitophagy and its possible role in cardioprotection. J Physiol Sci 2017;67:639-54. Erratum in: J Physiol Sci 2017;68:205. 
  10. Wang H, Wang H, Liang EY, Zhou LX, Dong ZL, Liang P, Weng QF, Yang M. Thrombopoietin protects H9C2 cells from excessive autophagy and apoptosis in doxorubicin-induced cardiotoxicity. Oncol Lett 2018;15:839-48.  https://doi.org/10.3892/ol.2017.7410
  11. Christidi E, Brunham LR. Regulated cell death pathways in doxorubicin-induced cardiotoxicity. Cell Death Dis 2021;12:339. 
  12. Kirkin V, Rogov VV. A diversity of selective autophagy receptors determines the specificity of the autophagy pathway. Mol Cell 2019;76:268-85.  https://doi.org/10.1016/j.molcel.2019.09.005
  13. Ma S, Attarwala IY, Xie XQ. SQSTM1/p62: a potential target for neurodegenerative disease. ACS Chem Neurosci 2019;10:2094-114.  https://doi.org/10.1021/acschemneuro.8b00516
  14. Islam MA, Sooro MA, Zhang P. Autophagic regulation of p62 is critical for cancer therapy. Int J Mol Sci 2018;19:1405. 
  15. Ahmed MK, Kundu GK, Al-Mamun MH, Sarkar SK, Akter MS, Khan MS. Chromium (VI) induced acute toxicity and genotoxicity in freshwater stinging catfish, Heteropneustes fossilis. Ecotoxicol Environ Saf 2013;92:64-70.  https://doi.org/10.1016/j.ecoenv.2013.02.008
  16. Avuloglu Yilmaz E, Unal F, Yuzbasioglu D. Evaluation of cytogenetic and DNA damage induced by the antidepressant drugactive ingredients, trazodone and milnacipran, in vitro. Drug Chem Toxicol 2017;40:57-66.  https://doi.org/10.1080/01480545.2016.1174870
  17. Ilgin S, Aydogan-Kilic G, Baysal M, Kilic V, Ardic M, Ucarcan S, Atli O. Toxic effects of trazodone on male reproductive system via disrupting hypothalamic-pituitary-testicular axis and inducing testicular oxidative stress. Oxid Med Cell Longev 2018;2018:7196142. Erratum in: Oxid Med Cell Longev 2018;2018:8294061. 
  18. Lu Y, Foo LY. Polyphenolics of Salvia--a review. Phytochemistry 2002;59:117-40.  https://doi.org/10.1016/S0031-9422(01)00415-0
  19. Mossi AJ, Cansian RL, Paroul N, Toniazzo G, Oliveira JV, Pierozan MK, Pauletti G, Rota L, Santos AC, Serafini LA. Morphological characterisation and agronomical parameters of different species of Salvia sp. (Lamiaceae). Braz J Biol 2011;71:121-9.  https://doi.org/10.1590/S1519-69842011000100018
  20. Ahmed OM, Ashour MB, Abd El Mawgoud AA, Ali MA. Assessment of the preventive effects of Salvia officinalis and Ruta graveolens ethanolic extracts on chlorpyrifos- and methomyl-induced testicular and cardiac toxicities in albino rats. Am J Med Med Sci 2017;7:287-301. 
  21. Safwat GM, Mohammed ET. Salvia officinalis oil improves the atherogenic index and cardiotoxicity in albino rats treated with 5- fluorouracil. Int J Pharm Bio Sci 2015;6:59-66. 
  22. Yousry SM, Taha RAM, El-Banna HA, Emam SR. Curative and protective effect of Salvia officinalis oil on isoprenalineinduced congestive heart failure in rats. Adv Anim Vet Sci 2021;9:1895-907.  https://doi.org/10.17582/journal.aavs/2021/9.11.1895.1907
  23. Khedr NF, Werida RH. l-carnitine modulates autophagy, oxidative stress and inflammation in trazodone induced testicular toxicity. Life Sci 2022;290:120025. 
  24. Rawat PS, Jaiswal A, Khurana A, Bhatti JS, Navik U. Doxorubicin-induced cardiotoxicity: an update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed Pharmacother 2021;139:111708. 
  25. Gerhardt W, Waldenstrom J. Creatine kinase B-subunit activity in serum after immunoinhibition of M-subunit activity. Clin Chem 1979;25:1274-80.  https://doi.org/10.1093/clinchem/25.7.1274
  26. Khedr NF. Protective effect of mirtazapine and hesperidin on cyclophosphamide-induced oxidative damage and infertility in rat ovaries. Exp Biol Med (Maywood) 2015;240:1682-9.  https://doi.org/10.1177/1535370215576304
  27. Koracevic D, Koracevic G, Djordjevic V, Andrejevic S, Cosic V. Method for the measurement of antioxidant activity in human fluids. J Clin Pathol 2001;54:356-61.  https://doi.org/10.1136/jcp.54.5.356
  28. Markham R, Young L, Fraser IS. An amplified ELISA for human tumour necrosis factor alpha. Eur Cytokine Netw 1995;6:49-54. 
  29. Suvarna SK, Layton C, Bancroft JD. Bancroft's theory and practice of histological techniques. 7th ed. Churchill Livingstone; 2012. p. 187-214. 
  30. Chi RF, Wang JP, Wang K, Zhang XL, Zhang YA, Kang YM, Han XB, Li B, Qin FZ, Fan BA. Progressive reduction in myocyte autophagy after myocardial infarction in rabbits: association with oxidative stress and left ventricular remodeling. Cell Physiol Biochem 2017;44:2439-54.  https://doi.org/10.1159/000486167
  31. Bozzola JJ, Russell LD. Electron microscopy principles and techniques for biologists. 2nd ed. Jones and Bartlett; 1999. p. 100-124. 
  32. El-Garawani IM. Ameliorative effect of Cymbopogon citratus extract on cisplatin-inducedgenotoxicity in human leukocytes. J Biosci Appl Res 2015;1:304-10.  https://doi.org/10.21608/jbaar.2015.106040
  33. Aljanabi SM, Martinez I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 1997;25:4692-3.  https://doi.org/10.1093/nar/25.22.4692
  34. Hassab El-Nabi SE, Elhassaneen YA. Detection of DNA damage, molecular apoptosis and production of home-made ladder by using simple techniques. Biotechnology 2008;7:514-22.  https://doi.org/10.3923/biotech.2008.514.522
  35. Liu K, Liu PC, Liu R, Wu X. Dual AO/EB staining to detect apoptosis in osteosarcoma cells compared with flow cytometry. Med Sci Monit Basic Res 2015;21:15-20.  https://doi.org/10.12659/MSMBR.893327
  36. Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 1988;175:184-91.  https://doi.org/10.1016/0014-4827(88)90265-0
  37. Aziz MM, Abd El Fattah MA, Ahmed KA, Sayed HM. Protective effects of olmesartan and l-carnitine on doxorubicin-induced cardiotoxicity in rats. Can J Physiol Pharmacol 2020;98:183-93.  https://doi.org/10.1139/cjpp-2019-0299
  38. Bossini L, Casolaro I, Koukouna D, Cecchini F, Fagiolini A. Off-label uses of trazodone: a review. Expert Opin Pharmacother 2012;13:1707-17.  https://doi.org/10.1517/14656566.2012.699523
  39. Li TC, Chiu HW, Ho KJ, Tzeng DS. Bradycardia following a single low dose of trazodone. Asian J Psychiatr 2011;4:77-9.  https://doi.org/10.1016/j.ajp.2010.03.003
  40. Chen CT, Wang ZH, Hsu CC, Lin HH, Chen JH. In vivo protective effects of diosgenin against doxorubicin-induced cardiotoxicity. Nutrients 2015;7:4938-54.  https://doi.org/10.3390/nu7064938
  41. Walker DB. Serum chemical biomarkers of cardiac injury for nonclinical safety testing. Toxicol Pathol 2006;34:94-104.  https://doi.org/10.1080/01926230500519816
  42. Tonomura Y, Mori Y, Torii M, Uehara T. Evaluation of the usefulness of biomarkers for cardiac and skeletal myotoxicity in rats. Toxicology 2009;266:48-54.  https://doi.org/10.1016/j.tox.2009.10.014
  43. O'Brien PJ. Cardiac troponin is the most effective translational safety biomarker for myocardial injury in cardiotoxicity. Toxicology 2008;245:206-18.  https://doi.org/10.1016/j.tox.2007.12.006
  44. Crivellente F. Utilising biomarkers to eliminate drug candidates with cardiotoxicity in preclinical development [Internet]. Drug Discovery World; 2011 Aug 23 [cited 2023 Feb]. Available from: https://www.ddw-online.com/utilising-biomarkers-to-eliminate-drug-candidates-with-cardiotoxicity-in-preclinical-development-1020-201108/ 
  45. Selvaraj V, Ramaswamy S, Bhatia SC. Transient ischemic attack associated with trazodone therapy: a case report. Prim Care Companion CNS Disord 2011;13:PCC.10l01093. 
  46. Shell WE, May LA, Bullias DH, Pavlik SL, Silver DS. Sentra PM (a medical food) and trazodone in the management of sleep disorders. J Cent Nerv Syst Dis 2012;4:65-72.  https://doi.org/10.4137/JCNSD.S9381
  47. Keles S, Caner I, Ates O, Cakici O, Saruhan F, Mumcu UY, unal D, Tekgunduz KS, Tastekin A, Hacimuftuoglu A, Gursans N, Alp HH. Protective effect of L-carnitine in a rat model of retinopathy of prematurity. Turk J Med Sci 2014;44:471-5.  https://doi.org/10.3906/sag-1301-9
  48. Peoples JN, Saraf A, Ghazal N, Pham TT, Kwong JQ. Mitochondrial dysfunction and oxidative stress in heart disease. Exp Mol Med 2019;51:1-13.  https://doi.org/10.1038/s12276-019-0355-7
  49. Mann DL. Tumor necrosis factor-induced signal transduction and left ventricular remodeling. J Card Fail 2002;8(6 Suppl):S379-86.  https://doi.org/10.1054/jcaf.2002.129253
  50. Nakamura K, Fushimi K, Kouchi H, Mihara K, Miyazaki M, Ohe T, Namba M. Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Circulation 1998;98:794-9.  https://doi.org/10.1161/01.CIR.98.8.794
  51. Blanca AJ, Ruiz-Armenta MV, Zambrano S, Miguel-Carrasco JL, Arias JL, Arevalo M, Mate A, Aramburu O, Vazquez CM. Inflammatory and fibrotic processes are involved in the cardiotoxic effect of sunitinib: Protective role of L-carnitine. Toxicol Lett 2016;241:9-18.  https://doi.org/10.1016/j.toxlet.2015.11.007
  52. Sun M, Chen M, Dawood F, Zurawska U, Li JY, Parker T, Kassiri Z, Kirshenbaum LA, Arnold M, Khokha R, Liu PP. Tumor necrosis factor-alpha mediates cardiac remodeling and ventricular dysfunction after pressure overload state. Circulation 2007;115:1398-407.  https://doi.org/10.1161/CIRCULATIONAHA.106.643585
  53. Lima CF, Andrade PB, Seabra RM, Fernandes-Ferreira M, Pereira-Wilson C. The drinking of a Salvia officinalis infusion improves liver antioxidant status in mice and rats. J Ethnopharmacol 2005;97:383-9.  https://doi.org/10.1016/j.jep.2004.11.029
  54. Shan B, Cai YZ, Sun M, Corke H. Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J Agric Food Chem 2005;53:7749-59.  https://doi.org/10.1021/jf051513y
  55. Buyukbalci A, El SN. Determination of in vitro antidiabetic effects, antioxidant activities and phenol contents of some herbal teas. Plant Foods Hum Nutr 2008;63:27-33.  https://doi.org/10.1007/s11130-007-0065-5
  56. Walch SG, Tinzoh LN, Zimmermann BF, Stuhlinger W, Lachenmeier DW. Antioxidant capacity and polyphenolic composition as quality indicators for aqueous infusions of Salvia officinalis L. (sage tea). Front Pharmacol 2011;2:79. 
  57. El-Hosseiny LS, Alqurashy NN, Sheweita SA. Oxidative stress alleviation by sage essential oil in co-amoxiclav induced hepatotoxicity in rats. Int J Biomed Sci 2016;12:71-8.  https://doi.org/10.59566/IJBS.2016.12071
  58. Amensour M, Sendra E, Abrini J, Bouhdid S, Perez-Alvarez JA, Fernandez-Lopez J. Total phenolic content and antioxidant activity of myrtle (Myrtus communis) extracts. Nat Prod Commun 2009;4:819-24.  https://doi.org/10.1177/1934578X0900400616
  59. Emran T, Chowdhury NI, Sarker M, Bepari AK, Hossain M, Rahman GMS, Reza HM. L-carnitine protects cardiac damage by reducing oxidative stress and inflammatory response via inhibition of tumor necrosis factor-alpha and interleukin-1beta against isoproterenol-induced myocardial infarction. Biomed Pharmacother 2021;143:112139. 
  60. Takeda N, Manabe I. Cellular interplay between cardiomyocytes and nonmyocytes in cardiac remodeling. Int J Inflam 2011;2011:535241. 
  61. Elnakish MT, Ahmed AA, Mohler PJ, Janssen PM. Role of oxidative stress in thyroid hormone-induced cardiomyocyte hypertrophy and associated cardiac dysfunction: an undisclosed story. Oxid Med Cell Longev 2015;2015:854265. 
  62. Zheng Q, Su H, Ranek MJ, Wang X. Autophagy and p62 in cardiac proteinopathy. Circ Res 2011;109:296-308.  https://doi.org/10.1161/CIRCRESAHA.111.244707
  63. Martinet W, Roth L, De Meyer GRY. Standard immunohistochemical assays to assess autophagy in mammalian tissue. Cells 2017;6:17. 
  64. Zhang SM, Shang ZF, Zhou PK. Autophagy as the effector and player in DNA damage response of cells to genotoxicants. Toxicol Res 2015;4:613-22.  https://doi.org/10.1039/C5TX00043B
  65. Brambilla G, Mattioli F, Martelli A. Genotoxic and carcinogenic effects of antipsychotics and antidepressants. Toxicology 2009;261:77-88 https://doi.org/10.1016/j.tox.2009.04.056