• Title/Summary/Keyword: tumor necrosis factor α

Search Result 489, Processing Time 0.024 seconds

Palmitic acid induces inflammatory cytokines and regulates tRNA-derived stress-induced RNAs in human trophoblasts

  • Changwon Yang;Garam An;Jisoo Song;Gwonhwa Song;Whasun Lim
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.218-225
    • /
    • 2022
  • High levels of proinflammatory cytokines have been observed in obese pregnancies. Obesity during pregnancy may increase the risk of various pregnancyrelated complications, with pathogenesis resulting from excessive inflammation. Palmitic acid (PA) is a saturated fatty acid that circulates in high levels in obese women. In our previous study, we found that PA inhibited the proliferation of trophoblasts developing into the placenta, induced apoptosis, and regulated the number of cleaved halves derived from transfer RNAs (tRNAs). However, it is not known how the expression of tRNA-derived stress-induced RNAs (tiRNAs) changes in response to PA treatment at concentrations that induce inflammation in human trophoblasts. We selected concentrations that did not affect cell viability after dose-dependent treatment of HTR8/SVneo cells, a human trophoblast cell line. PA (200 μM) did not affect the expression of apoptotic proteins in HTR8/SVneo cells. PA significantly increased the expression of inflammatory cytokines including interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α. In addition, 200 μM PA significantly increased the expression of tiRNAs compared to 800 μM PA treatment. These results suggest that PA impairs placental development during early pregnancy by inducing an inflammatory response in human trophoblasts. In addition, this study provides a basis for further research on the association between PA-induced inflammation and tiRNA generation.

Neuroprotective effects of three flavonoids from Acer okamotoanum against neurotoxicity induced by amyloid beta in SH-SY5Y cells

  • Ji Hyun Kim;Sanghyun Lee;Eun Ju Cho
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.2
    • /
    • pp.227-237
    • /
    • 2022
  • Amyloid beta (Aβ) is produced from an amyloid precursor protein by the activation of the amyloidogenic pathway, and it is widely known to cause Alzheimer's disease (AD). In this study, we investigated the neuroprotective effects of three flavonoids, quercitrin, isoquercitrin, and afzelin, from Acer okamotoanum against Aβ-induced neurotoxicity in SH-SY5Y neuronal cells. Aβ25-35 treatments resulted in decreased cell viability and increased levels of nuclei condensation and fragmentation. However, an isoquercitrin treatment dose-dependently increased cell viability and decreased nuclei condensation and fragmentation levels. SH-SY5Y cells treated with Aβ25-35 showed increased reactive oxygen species (ROS) production compared to that from cells not treated with Aβ25-35. However, treatment with the three flavonoids significantly inhibited ROS production compared to an Aβ25-35-treated control group, indicating that the three flavonoids blocked neuronal oxidative stress. For a closer examination of the neuroprotective mechanisms, we measured the expressions of the non-amyloidogenic pathway-related proteins of a disintegrin and metalloprotease 10 (ADAM10) and the tumor necrosis factor-α converting enzyme (TACE). An isoquercitrin treatment enhanced the expressions of ADAM10 compared to the control group. In addition, the three flavonoids activated the non-amyloidogenic pathway via the upregulation of TACE. In conclusion, we demonstrated neuroprotective effects of three flavonoids from A. okamotoanum, in particular isoquercitrin, on neurotoxicity by the regulation of the non-amyloidogenic pathway in Aβ25-35-treated SH-SY5Y cells. Therefore, we suggest that flavonoids from A. okamotoanum may have some potential as therapeutics of AD.

Scutellaria baicalensis Extract Alleviates Pain and Inflammation in Animal Models

  • Haeni Seo;Ho-Sueb Song
    • Journal of Acupuncture Research
    • /
    • v.40 no.1
    • /
    • pp.35-43
    • /
    • 2023
  • Background: This study aimed to examine the effect of Scutellaria baicalensis extract (SBE) on ameliorating pain response and inflammation in an animal model. Methods: The effects of SBE on joint inflammation-induced rats and pain writhing response were measured. In rats with monosodium iodoacetate (MIA)-induced knee osteoarthritis (OA), the weight-bearing distribution of the hind legs was measured, the actual joint condition was visually confirmed, and serum cytokines were extracted from whole blood and measured. In addition, the acetic acid-induced pain was measured by the number of abdominal wall contractions and writhing responses. Results: 1. The weight-bearing distribution of the hind limbs of the SBE group was remarkably improved compared with that of the control group 7 days after MIA treatment, and the SBE 300 group was improved similarly to that of the indomethacin group. 2. Cartilage erosion was significantly recovered in the SBE and indomethacin groups, and the degree of healing of cartilage erosion by SBE was similar to that by indomethacin. 3. The serum levels of cytokines interleukin-1β, tumor necrosis factor-α, and interleukin-6 were significantly decreased in the SBE group compared with that in the control group, and the SBE 300 group had reduced levels of cytokines similar to the indomethacin group. 4. As regards acetic acid-induced writhing response, the number of writhes was significantly reduced in the SBE and ibuprofen groups, and the SBE 600 group had fewer writhes than the ibuprofen group. Conclusion: SBE significantly improves knee OA and pain and is expected to show similar therapeutic effects to indomethacin and ibuprofen.

Investigation of Anxiolytic- and Antidepressant-like Effects of Essential Oils from Six Traditional Korean Herbal Prescriptions

  • Ly Thi Huong Nguyen;Nhi Phuc Khanh Nguyen;Khoa Nguyen Tran;Heung-Mook Shin;In-Jun Yang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.37 no.2
    • /
    • pp.36-44
    • /
    • 2023
  • Essential oils and aromatherapy have traditionally been used for the treatment of anxiety and depression with few side effects. This study aimed to investigate the effects of essential oils from six herbal prescriptions known to be effective in treating anxiety and depression in Korean medicine. The neuroprotective and anti-neuroinflammatory effects of six essential oils, including Gamisachil-tang (GMSCT), Guibi-tang (GBT), Sihogayonggolmoryeo-tang (SYM), Danchisoyosan (DCSYS), Sihosogansan (SHSGS), and Soyosan (SYS), were examined in PC12 and BV2 cells. In corticosterone (CORT)-stimulated PC12 cells, all six essential oils ameliorated the CORT-induced decrease in cell viability at a concentration of 10 ㎍/ml. GMSCT, GBT, and SHSGS recovered CORT-induced cytotoxicity at concentrations of 1 ㎍/ml and 10 ㎍/ml. In lipopolysaccharide (LPS)-stimulated BV2 cells, GBT (10 ㎍/ml) decreased interleukin (IL)-1β production, whereas SHSGS (1 ㎍/ml) inhibited tumor necrosis factor (TNF)-α production. In the MK-801-induced anxiety in zebrafish, electroencephalogram (EEG) assessment indicated that GMSCT and SHSGS induced recovery in the delta and beta power densities and reduced theta/beta and delta/beta ratios. DCSYS and SYS decreased theta power density and theta/beta ratio, whereas GBT and SYM showed no effects on EEG signals. In the tail suspension test (TST) in mice, GBT, DCSYS, SHSGS, and SYS exhibited antidepressant-like effects by decreasing immobility time. These results suggest that the essential oils from the six herbal prescriptions, except SYM, may have beneficial effects on anxiety and/or depression. Further studies should be conducted to investigate the molecular signaling pathways that mediate the effects of these essential oils on anxiety and depression.

Evaluation of Clinical Efficacy and Safety Following Kyungokgo-Gamibang Administration in Dogs with Skin and Joint Diseases

  • Ga-Won Lee;Heyong-Seok Kim;Jong-Won Kim;Yang-Seon Moon;Chang-Su Na
    • Journal of Veterinary Clinics
    • /
    • v.40 no.2
    • /
    • pp.113-118
    • /
    • 2023
  • Skin and joint diseases are relatively common in dogs. Nutritional complementation is one of the various management strategies for these disorders. This study evaluated the safety and clinical efficacy of Kyungokgo-gamibang in dogs with skin and joint diseases. Thirty dogs with diseases were included and divided into three groups: control group (n = 15), skin group (n = 10), and joint group (n = 5). The skin and joint groups were fed skin and joint gums composed of Kyungokgo-gamibang extract with standard treatment for four weeks. The control group included dogs with skin diseases who were administered standard skin infection treatment for 4 weeks. The physical and laboratory results showed no remarkable adverse effects of Kyungokgo-gamibang extract after its administration in dogs. Clinical efficacy was evaluated using quality of life scale, and levels of cytokines, including interferon-γ, interleukin (IL)-2, IL-6, IL-8, IL-10, monocyte chemoattractant protein-1, and tumor necrosis factor-α, for 4 weeks in all groups. Dermatologic clinical scales were performed for 4 weeks in the control and skin groups. Both the control and skin groups had significantly decreased dermatologic clinical scales, including pruritus and erythema scales (p < 0.05). Among the cytokine levels, only IL-2 concentration was significantly decreased in the skin group after 4 weeks of administration of the Kyungokgo-gamibang extract (p = 0.032). There was no significant difference between the levels of cytokines on days 0 and 28 in the joint group. The quality of life scale was significantly increased after week 4 compared to week 0 in the skin (p = 0.008) and joint groups (p = 0.041). This study suggests that Kyungokgo-gamibang extract can be applied in managing dogs affected by skin and joint diseases without adverse effects.

Updated Trans-Ethnic Meta-Analysis of Associations between Inflammation-Related Genes and Intracranial Aneurysm

  • Eun Pyo Hong;Sung Min Cho;Jong Kook Rhim;Jeong Jin Park;Jun Hyong Ahn;Dong Hyuk Youn;Jong-Tae Kim;Chan Hum Park;Younghyurk Lee;Jin Pyeong Jeon;the First Korean Stroke Genetics Association Research (The FirstKSGAR) Study
    • Journal of Korean Neurosurgical Society
    • /
    • v.66 no.5
    • /
    • pp.525-535
    • /
    • 2023
  • Objective : We performed an expanded multi-ethnic meta-analysis to identify associations between inflammation-related loci with intracranial aneurysm (IA) susceptibility. This meta-analysis possesses increased statistical power as it is based on the most data ever evaluated. Methods : We searched and reviewed relevant literature through electronic search engines up to August 2022. Overall estimates were calculated under the fixed- or random-effect models using pooled odds ratio (OR) and 95% confidence intervals (CIs). Subgroup analyses were performed according to ethnicity. Results : Our meta-analysis enrolled 15 studies and involved 3070 patients and 5528 controls including European, Asian, Hispanic, and mixed ethnic populations. Of 17 inflammation-related variants, the rs1800796 locus (interleukin [IL]-6) showed the most significant genome-wide association with IA in East-Asian populations, including 1276 IA patients and 1322 controls (OR, 0.65; 95% CI, 0.56-0.75; p=3.24#x00D7;10-9) under a fixed-effect model. However, this association was not observed in the European population (OR, 1.09; 95% CI, 0.80-1.47; p=0.5929). Three other variants, rs16944 (IL-1β), rs2195940 (IL-12B), and rs1800629 (tumor necrosis factor-α) showed a statistically nominal association with IA in both the overall, as well as East-Asian populations (0.01<p<0.05). Conclusion : Our updated meta-analysis with increased statistical power highlights that rs1800796 which maps on the IL-6 gene is associated with IA, and in particular confers a protective effect against occurrence of IA in the East-Asian population.

Protective effect of Buddha's Temple extract against tert-butyl hydroperoxide stimulation-induced oxidative stress in DF-1 cells

  • Eun Hye Park;Sung-Jo Kim
    • Animal Bioscience
    • /
    • v.36 no.7
    • /
    • pp.1120-1129
    • /
    • 2023
  • Objective: This study aimed to determine the protective efficacy of Buddha's Temple (BT) extract against tert-butyl hydroperoxide (t-BHP)-induced oxidative stress in Gallus gallus chicken embryo fibroblast cell line (DF-1) and its effects on the cell lipid metabolism. Methods: In this experimental study, Gallus gallus DF-1 fibroblast cells were pretreated with BT 10-7 for 24 hours, followed by their six-hour exposure to t-BHP (100 μM). Water-soluble tetrazolium salt-8 (WST-8) assays were performed, and the growth curve was computed. The intracellular gene expression changes caused by BT extract were confirmed through quantitative polymerase chain reaction (qPCR). Flow cytometry, oil red O staining experiment, and thin-layer chromatography were performed for the detection of intracellular metabolic mechanism changes. Results: The WST-8 assay results showed that the BT pretreatment of Gallus gallus DF-1 fibroblast cell increased their cell survival rate by 1.08%±0.04%, decreased the reactive oxygen species (ROS) level by 0.93%±0.12% even after exposure to oxidants, and stabilized mitochondrial activity by 1.37%±0.36%. In addition, qPCR results confirmed that the gene expression levels of tumor necrosis factor α (TNFα), TIR domain-containing adapter inducing IFN-beta (TICAM1), and glucose-regulated protein 78 (GRP78) were regulated, which contributed to cell stabilization. Thin-layer chromatography and oil red O analyses showed a clear decrease in the contents of lipid metabolites such as triacylglycerol and free fatty acids. Conclusion: In this study, we confirmed that the examined BT extract exerted selective protective effects on Gallus gallus DF-1 fibroblast cells against cell damage caused by t-BHP, which is a strong oxidative inducer. Furthermore, we established that this extract significantly reduced the intracellular ROS accumulation due to oxidative stress, which contributes to an increase in poultry production and higher incomes.

Sequential anti-inflammatory and osteogenic effects of a dual drug delivery scaffold loaded with parthenolide and naringin in periodontitis

  • Rui Chen;Mengting Wang;Qiaoling Qi;Yanli Tang;Zhenzhao Guo;Shuai Wu;Qiyan Li
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.1
    • /
    • pp.20-37
    • /
    • 2023
  • Purpose: Our pilot study showed that a 3-dimensional dual drug delivery scaffold (DDDS) loaded with Chinese herbs significantly increased the regenerated bone volume fraction. This study aimed to confirm the synergistic anti-inflammatory and osteogenic preclinical effects of this system. Methods: The targets and pathways of parthenolide and naringin were predicted. Three cell models were used to assess the anti-inflammatory effects of parthenolide and the osteogenic effects of naringin. First, the distance between the cementoenamel junction and alveolar bone crest (CEJ-ABC) and the bone mineral density (BMD) of surgical defects were measured in a rat model of periodontitis with periodontal fenestration defects. Additionally, the mRNA expression levels of matrix metallopeptidase 9 (MMP9) and alkaline phosphatase (ALP) were measured. Furthermore, the number of inflammatory cells and osteoclasts, as well as the protein expression levels of tumor necrosis factor-alpha (TNF-α) and levels of ALP were determined. Results: Target prediction suggested prostaglandin peroxidase synthase (PTGS2) as a potential target of parthenolide, while cytochrome P450 family 19 subfamily A1 (CYP19A1) and taste 2 receptor member 31 (TAS2R31) were potential targets of naringin. Parthenolide mainly targeted inflammation-related pathways, while naringin participated in steroid hormone synthesis and taste transduction. In vitro experiments revealed significant antiinflammatory effects of parthenolide on RAW264.7 cells, and significant osteogenic effects of naringin on bone marrow mesenchymal stem cells and MC3T3-E1 cells. DDDS loaded with parthenolide and naringin decreased the CEJ-ABC distance and increased BMD and ALP levels in a time-dependent manner. Inflammation was significantly alleviated after 14 days of DDDS treatment. Additionally, after 56 days, the DDDS group exhibited the highest BMD and ALP levels. Conclusions: DDDS loaded with parthenolide and naringin in a rat model achieved significant synergistic anti-inflammatory and osteogenic effects, providing powerful preclinical evidence.

The Effects of Resveratrol on Silica-Induced Lung Oxidative Stress and Inflammation in Rat

  • Maryam Esfahani;Amir Hossein Rahbar;Sara Soleimani Asl;Saed Bashirian;Effat Sadat Mir Moeini;Fereshteh Mehri
    • Safety and Health at Work
    • /
    • v.14 no.1
    • /
    • pp.118-123
    • /
    • 2023
  • Background: Chronic exposure to silica is related with the provocation of an inflammatory response and oxidative stress mechanism. Vitamin D has multiple benefits in biological activities particularly respiratory system disease. Method: In this research, 20 male Wistar rats were randomly allocated into four groups (5 rats /group) as follow: Group1 received saline as (negative control) group. The group 2 received a single IT instillation of silica (positive control) group; the group 3 was co-administrated with single IT silica and Vitamin D (20 mg/kg/day) daily for a period of 90 days. The rats of group 4 received Vitamin D daily for a period of 90 days. Results: Silica significantly increased serum and lung total Oxidant Status (TOS). Meanwhile, silica reduced serum and lung total antioxidant capacity (TAC), GSH and tumor necrosis factor-α (TNF-a). Vitamin D treatment meaningfully reversed oxidative stress, antioxidants status and inflammatory response. Also, Vitamin D improved histopathological changes caused by silica. Conclusion: These findings indicate that Vitamin D exerts protective effects against silica-induced lung injury. It seems that Vitamin D has potential use as a therapeutic object for silica induced lung injure.

Expression of cytokines and co-stimulatory molecules in the Toxoplasma gondii-infected dendritic cells of C57BL/6 and BALB/c mice

  • Jae-Hyung Lee;Jae-Min Yuk;Guang-Ho Cha;Young-Ha Lee
    • Parasites, Hosts and Diseases
    • /
    • v.61 no.2
    • /
    • pp.138-146
    • /
    • 2023
  • Toxoplasma gondii is an intracellular protozoan parasite which can infect most warm-blooded animals and humans. Among the different mouse models, C57BL/6 mice are more susceptible to T. gondii infection compared to BALB/c mice, and this increased susceptibility has been attributed to various factors, including T-cell responses. Dendritic cells (DCs) are the most prominent type of antigen-presenting cells and regulate the host immune response, including the response of T-cells. However, differences in the DC responses of these mouse strains to T. gondii infection have yet to be characterized. In this study, we cultured bone marrow-derived DCs (BMDCs) from BALB/c and C57BL/6 mice. These cells were infected with T. gondii. The activation of the BMDCs was assessed based on the expression of cell surface markers and cytokines. In the BMDCs of both mouse strains, we detected significant increases in the expression of cell surface T-cell co-stimulatory molecules (major histocompatibility complex (MHC) II, CD40, CD80, and CD86) and cytokines (tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-12p40, IL-1β, and IL-10) from 3 h post-T. gondii infection. The expression of MHC II, CD40, CD80, CD86, IFN-γ, IL-12p40, and IL-1β was significantly higher in the T. gondii-infected BMDCs obtained from the C57BL/6 mice than in those from the BALB/c mice. These findings indicate that differences in the activation status of the BMDCs in the BALB/c and C57BL/6 mice may account for their differential susceptibility to T. gondii.