Background and Objectives : Salivary gland neoplasms are unique because of their infrequency, inconsistent classification, and highly variable biologic behavior. The aim of this study is to analysis the histopathologic classification of salivary glnad neoplasm and to suggest a guideline of management. Materials and Methods : The medical records of 310 patients with salivary gland neoplasm who treated at Asan medical center between 1992 and 2001 were analyzed retrospectively. Among the 310 patients, 138 patients were male and 172 patients were female. Mean age was 50.5 years. Results : Benign salivary neoplasms were 213 cases. They consisted of 153 cases (71.8%) of parotid tumor, 41 cases (19.2%) of submandibular gland tumor and 19 cases (8.9%) of minor salivary gland tumor. Pleomorphic adenoma was the most common benign neoplasm. Malignant salivary neoplasms were 97 cases. They consisted of 45 cases (46.4%) of parotid tumor, 26 cases(26.8%) of minor salivary gland tumor, 24 cases(24.7%) of submandibular gland tumor and 2 cases(2.1%) of sublingual gland tumor. Adenoid cystic carcinoma was the most common malignant neoplasm. Conclusions : The most commonly involved gland was parotid (64%) and the most frequent tumor was pleomorphic adenoma (52%). Although the majority of minor salivary gland neoplasms are malignant, three of parotid tumors are benign.
In this paper, the purpose is evaluation of the effect of using fractal feature in machine learning based pancreatic tumor classification. We used the data that Pancreas CT series 469 case including 1995 slice of benign and 1772 slice of malignant. Feature selection is implemented from 109 feature to 7 feature by Lasso regularization. In Fractal feature, fractal dimension is obtained by box-counting method, and hurst coefficient is calculated range data of pixel value in ROI. As a result, there were significant differences in both benign and malignancies tumor. Additionally, we compared the classification performance between model without fractal feature and model with fractal feature by using support vector machine. The train model with fractal feature showed statistically significant performance in comparison with train model without fractal feature.
Tumors of the brain are the deadliest, with a life expectancy of only a few years for those with the most advanced forms. Diagnosing a brain tumor is critical to developing a treatment plan to help patients with the disease live longer. A misdiagnosis of brain tumors will lead to incorrect medical treatment, decreasing a patient's chance of survival. Radiologists classify brain tumors via biopsy, which takes a long time. As a result, the doctor will need an automatic classification system to identify brain tumors. Image classification is one application of the deep learning method in computer vision. One of the deep learning's most powerful algorithms is the convolutional neural network (CNN). This paper will introduce a novel deep learning structure and image gradient to classify brain tumors. Meningioma, glioma, and pituitary tumors are the three most popular forms of brain cancer represented in the Figshare dataset, which contains 3,064 T1-weighted brain images from 233 patients. According to the numerical results, our method is more accurate than other approaches.
Lee, Ha Neul;Seo, Hong-Deok;Kim, Eui-Myoung;Han, Beom Seok;Kang, Jin Seok
Biomolecules & Therapeutics
/
제30권2호
/
pp.179-183
/
2022
Traditionally, pathologists microscopically examine tissue sections to detect pathological lesions; the many slides that must be evaluated impose severe work burdens. Also, diagnostic accuracy varies by pathologist training and experience; better diagnostic tools are required. Given the rapid development of computer vision, automated deep learning is now used to classify microscopic images, including medical images. Here, we used a Inception-v3 deep learning model to detect mouse lung metastatic tumors via whole slide imaging (WSI); we cropped the images to 151 by 151 pixels. The images were divided into training (53.8%) and test (46.2%) sets (21,017 and 18,016 images, respectively). When images from lung tissue containing tumor tissues were evaluated, the model accuracy was 98.76%. When images from normal lung tissue were evaluated, the model accuracy ("no tumor") was 99.87%. Thus, the deep learning model distinguished metastatic lesions from normal lung tissue. Our approach will allow the rapid and accurate analysis of various tissues.
Choi, Jang Kyu;Park, Young Suk;Jung, Do Hyun;Son, Sang Yong;Ahn, Sang Hoon;Park, Do Joong;Kim, Hyung Ho
Journal of Gastric Cancer
/
제15권3호
/
pp.183-190
/
2015
Purpose: The Lauren classification system is a very commonly used pathological classification system of gastric adenocarcinoma. A recent study proposed that the Lauren classification should be modified to include the anatomical location of the tumor. The resulting three types were found to differ significantly in terms of genomic expression profiles. This retrospective cohort study aimed to evaluate the clinical significance of the modified Lauren classification (MLC). Materials and Methods: A total of 677 consecutive patients who underwent curative gastrectomy from January 2005 to December 2007 for histologically confirmed gastric cancer were included. The patients were divided according to the MLC into proximal non-diffuse (PND), diffuse (D), and distal non-diffuse (DND) type. The groups were compared in terms of clinical features and overall survival. Multivariate analysis served to assess the association between MLC and prognosis. Results: Of the 677 patients, 48, 358, and 271 had PND, D, and DND, respectively. Their 5-year overall survival rates were 77.1%, 77.7%, and 90.4%. Compared to D and PND, DND was associated with significantly better overall survival (both P<0.01). Multivariate analysis showed that age, differentiation, lympho-vascular invasion, T and N stage, but not MLC, were independent prognostic factors for overall survival. Multivariate analysis of early gastric cancer patients showed that MLC was an independent prognostic factor for overall survival (odds ratio, 5.946; 95% confidence intervals, 1.524~23.197; P=0.010). Conclusions: MLC is prognostic for survival in patients with gastric adenocarcinoma, in early gastric cancer. DND was associated with an improved prognosis compared to PND or D.
뇌 MRI 영상의 자동 분류는 뇌종양의 조기 진단을 하는 데 있어 중요한 역할을 한다. 본 연구에서 우리는 심층 특징 앙상블을 사용한 MRI 영상에서의 딥 러닝 기반 뇌종양 분류 모델을 제안한다. 우선 사전 학습된 3개의 합성 곱 신경망을 사용하여 입력 MRI 영상에 대한 심층 특징들을 추출한다. 그 이후 추출된 심층 특징들은 완전 연결 계층들로 구성된 분류 모듈의 입력 값으로 들어간다. 분류 모듈에서는 우선 3개의 서로 다른 심층 특징들 각각에 대해 먼저 완전 연결 계층을 거쳐 특징 차원을 줄인다. 그 이후 3개의 차원이 준 특징들을 결합하여 하나의 특징 벡터를 생성한 뒤 다시 완전 연결 계층의 입력값으로 들어가서 최종적인 분류 결과를 예측한다. 우리가 제안한 모델을 평가하기 위해 웹상에 공개된 뇌 MRI 데이터 셋을 사용하였다. 실험 결과 우리가 제안한 모델이 다른 기계학습 기반 모델보다 더 좋은 성능을 나타냄을 확인하였다.
Kuzan-Fischer, Claudia Miranda;Juraschka, Kyle;Taylor, Michael D.
Journal of Korean Neurosurgical Society
/
제61권3호
/
pp.292-301
/
2018
Medulloblastoma is the most common malignant brain tumor of childhood and remains a major cause of cancer related mortality in children. Significant scientific advancements have transformed the understanding of medulloblastoma, leading to the recognition of four distinct clinical and molecular subgroups, namely wingless (WNT), sonic hedgehog, group 3, and group 4. Subgroup classification combined with the recognition of subgroup specific molecular alterations has also led to major changes in risk stratification of medulloblastoma patients and these changes have begun to alter clinical trial design, in which the newly recognized subgroups are being incorporated as individualized treatment arms. Despite these recent advancements, identification of effective targeted therapies remains a challenge for several reasons. First, significant molecular heterogeneity exists within the four subgroups, meaning this classification system alone may not be sufficient to predict response to a particular therapy. Second, the majority of novel agents are currently tested at the time of recurrence, after which significant selective pressures have been exerted by radiation and chemotherapy. Recent studies demonstrate selection of tumor sub-clones that exhibit genetic divergence from the primary tumor, exist within metastatic and recurrent tumor populations. Therefore, tumor resampling at the time of recurrence may become necessary to accurately select patients for personalized therapy.
Objectives : The purpose of this study is to report the clinical effect of Korean medical treatment on a spinal cord tumor. Methods : We treated a patient who was diagnosed with a spinal cord tumor. We used acupuncture, bee venom pharmacopuncture, herbal medicine, moxibustion and physical therapy; the patient was evaluated using the visual analogue scale(VAS) and given an International Standards for Neurological Classification of Spinal Cord Injury(ISNCSCI) score. Results : VAS decreased and ISNCSCI score increased meaningfully. Conclusions : According to these results, this report possibly suggests that Korean medical treatment could be a helpful choice for treating a spinal cord tumor.
Journal of the Korean Association of Oral and Maxillofacial Surgeons
/
제38권4호
/
pp.212-220
/
2012
Objectives: Fluorine-18 fluorodeoxyglucose positron emission tomography ($^{18}F$-FDG PET) is a non-invasive diagnostic tool for many human cancers wherein glucose uptake transporter-1 (GLUT-1) acts as a main transporter in the uptake of $^{18}F$-FDG in cancer cells. Increased expression of glucose transporter-1 has been reported in many human cancers. In this study, we investigated the correlation between $^{18}F$-FDG accumulation and expression of GLUT-1 in oral cancer. Materials and Methods: We evaluated 42 patients diagnosed with oral squamous cell carcinoma (OSCC) and malignant salivary gland tumor as confirmed by histology. 42 patients underwent pre-operative $^{18}F$-FDG PET, with the maximum standardized uptake value ($SUV_{max}$) measured in each case. Immunohistochemical staining was done for each histological specimen, and results were evaluated post-operatively according to the percentage (%) of positive area, intensity, and staining score. Results: For OSCC, $SUV_{max}$ significantly increased as T stage of tumor classification increased. For malignant salivary gland tumor, $SUV_{max}$ significantly increased as T stage of tumor classification increased. For OSCC, GLUT-1 was expressed in all 36 cases. GLUT-1 staining score (GSS) increased as T stage of tumor classification increased, with the difference statistically significant. For malignant salivary gland tumor, GLUT-1 expression was observed in all 6 cases; average GSS was significantly higher in patients with cervical lymph node metastasis than that in patients without cervical lymph node metastasis. Average GSS was higher in OSCC ($11.11{\pm}1.75$) than in malignant salivary gland tumor ($5.33{\pm}3.50$). No statistically significant correlation between GSS and $SUV_{max}$ was observed in OSCC or in malignant salivary gland tumor. Conclusion: We found no statistically significant correlation between GSS and $SUV_{max}$ in OSCC or in malignant salivary gland tumor. Studies on the various uses of GLUT during $^{18}F$-FDG uptake and SUV and GLUT as tumor prognosis factor need to be conducted through further investigation with large samples.
Microarray gene expression profiling technology is one of the most important research topics in clinical diagnosis of disease. Given thousands of genes, only a small number of them show strong correlation with a certain phenotype. To identify such an optimal subset from thousands of genes is intractable, which plays a crucial role when classify multiple-class genes express models from tumor samples. This paper proposes an efficient classifier design method to simultaneously select the most relevant genes using an intelligent genetic algorithm (IGA) and design an accurate classifier using Support Vector Machine (SVM). IGA with an intelligent crossover operation based on orthogonal experimental design can efficiently solve large-scale parameter optimization problems. Therefore, the parameters of SVM as well as the binary parameters for gene selection are all encoded in a chromosome to achieve simultaneous optimization of gene selection and the associated SVM for accurate tumor classification. The effectiveness of the proposed method IGA/SVM is evaluated using four benchmark datasets. It is shown by computer simulation that IGA/SVM performs better than the existing method in terms of classification accuracy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.