• Title/Summary/Keyword: tubular construction

Search Result 169, Processing Time 0.024 seconds

Raffles City in Hangzhou China -The Engineering of a 'Vertical City' of Vibrant Waves-

  • Wang, Aaron J.
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.1
    • /
    • pp.33-47
    • /
    • 2017
  • This mixed-use Raffles City (RCH) development is located near the Qiantang River in Hangzhou, the capital of Zhejiang province, located southwest of Shanghai, China. The project incorporates retail, offices, housing, and hotel facilities and marks the site of a cultural landscape within the Quianjiang New Town Area. The project is composed of two 250-meter-tall twisting towers with a form of vibrant waves, along with a commercial podium and three stories of basement car parking. It reaches a height of 60 stories, presenting views both to and from the Qiantang River and West Lake areas, with a total floor area of almost 400,000 square meters. A composite moment frame plus concrete core structural system was adopted for the tower structures. Concrete filled steel tubular (CFT) columns together with steel reinforced concrete (SRC) beams form the outer moment frame of the towers' structure. The internal slabs and floor beams are of reinforced concrete. This paper presents the engineering design and construction of this highly complex project. Through comprehensive discussion and careful elaboration, some conclusions are reached, which serve as a reference guide for the design and construction of similar free-form, hybrid, mix-use buildings.

Parametric study on bearing capacity of CFST members considering the concrete horizontal casting effect

  • Sun, Wenbo;Luo, Yiqun;Zhou, Weijian;Huang, Wei
    • Steel and Composite Structures
    • /
    • v.13 no.3
    • /
    • pp.259-275
    • /
    • 2012
  • Concrete filled steel tubular (CFST) member has been widely used in the construction of high-rise buildings for its high axial bearing capacity. It can also be applied on long-span structures such as spatial structures or bridges not only for its high bearing capacity but also for its construction convenience. Concrete casting effect of CFST member is considered in the study of its bearing capacity in this paper. Firstly, in order to authenticate the applicability of constitutive relationship and yield criterion of steel and concrete based on FEM, two ANSYS models are built to simulate and compared with other's test. Secondly, in order to find the huge difference in bearing capacity due to different construction processes, two full-size CFST models are studied when they are horizontally cast and axially compressed. Finally, the effects of slenderness ratio (L/D) and confining parameter (D/t) of CFST members are studied to reveal the intrinsic links between bearing capacity and slenderness ratio or confining parameter.

Punching Shear Strength and Behavior of CFT Column to RC Flat Plate connections (CFT기둥-RC 무량판 접합부의 펀칭전단강도 및 거동)

  • Lee, Cheol Ho;Kim, Jin Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.491-502
    • /
    • 2006
  • This paper summarizes full-scale test results on CFT column-to- flat plate connections has gained wide acceptance subjected to gravity loading. CFT construction has gained wide acceptance in a relatively short time in domestic building construction practice due to its various structural and construction advantages. However, efficient details for CFT column to flat plate connections have not been proposed yet. Based on the strategies that maximize economical field construction, several connecting schemes were proposed and tested. Test results showed strength and connection stiffness exceeding those of R/C flat p late counterparts. A semi-analytical procedure is presented to model the behavior of CFT column-to-flat plate connections. The five parameters to model elastic to post-punching catenary action range are calibrated based on the limited test data of t to progressive collapse prevention design is also illustrated.

Punching Shear Strength of CFT Column to RC Flat Plate Connections Reinforced with Shearhead (전단머리 보강 CFT기둥-RC 무량판 접합부의 펀칭전단강도)

  • Kim, Jin-Won;Lee, Cheol-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.423-433
    • /
    • 2012
  • This paper summarizes full-scale gravity-load test results on CFT column-to-RC flat plate connections reinforced with shearhead. CFT construction has many structural and constructional advantages over conventional steel and RC column construction and is gaining wide acceptance. Meanwhile the use of RC flat plate system in the basement and residential floors of tall buildings is often mandatory to reduce story height and enable rapid construction in domestic practice. Combining CFT column and flat plate floor is expected to result in further rapid construction. However, the issues related to connecting CFT column to RC flat plate have not been fully addressed yet. Several promising connecting schemes by using steel shearhead were proposed and tested in this study. Test results showed that the proposed connection can exhibit the punching shear strength higher than RC flat plate counterparts. An empirical formula that can reasonably predicts the punching shear strength of the proposed connection was also proposed.

Estimation of the Local Load-Carrying Capacities of CFCT Column to H-Beam Connections by Yield Line Model -With regard to the Tensile side of Beam flange- (인장측 보플랜지의 항복선 모델을 이용한 CFCT기둥-H형강보 접합부의 국부내력평가)

  • Kang, Hyun Sik;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.525-536
    • /
    • 1998
  • This paper is concerned with a theoretical study on the local load-carrying capacities of Concrete-Filled Circular Tubular(CFCT) column to H-beam connections by yield line theory. In this paper, the three cases which are assumed the yield line are involved. The first model is a simplified yield line model. The second model is modified by x and kx factors. The last one is a Morita's model. The local load-carrying capacities of CFCT column to H-beam connections has been studied both experimentally and theoretically using the yield line theory. The purpose of this paper is to suggest the basic data for developing the non-diaphragm connection.

  • PDF

Experimental Study on the Inelastic Behavior of Single-layer Latticed Dome with New Connection (새로운 접합상세를 가진 단층 래티스 돔의 비탄성 거동에 관한 실험연구)

  • Kim, Myeong Han;Oh, Myoung Ho;Jung, Seong Yeol;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.2
    • /
    • pp.145-154
    • /
    • 2009
  • This study discusses the inelastic behavior of single-layer latticed dome, which consists of a tubular truss member and newly proposed joint sections, through a loading test on a scaled-down structure. The loading test was performed under displacement control conditions, using loading transfer system for the same value of point loads on all joints. The maximum applied load was nearly 1.6 times of the design load, and structural failure occurred after exceeding the compressive yielding in some members. Structural displacement was maintained up to the limit of the oil jack. The behavior of the latticed dome from the loading test was analyzed according to the order of loading steps.

Structural Strength of Beam-to-CFT Connections with Vertical Diaphragm (수직다이아프램을 사용한 충전형 각형강관기둥 접합부의 내력평가)

  • Kim, Kyungtae;Lee, Heon-Woo;Kim, Young-Ki;Kim, Taejin;Kim, Jong-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.3
    • /
    • pp.237-247
    • /
    • 2017
  • This paper investigates structural characteristics of internal vertical diaphragm and its influence on the connection strength between concrete filled tubular(CFT) column and beam. CFT columns are hybrids that combine two materials in one member. They have the benefits of steel for high tensile strength and ductility and of concrete for high compressive strength and stiffness. Analytical method of the flexural strength of vertical diaphragm to account moment transfer between panel zones is presented using yield line theory. Connection design is verified by a set of monotonic tests and numerical analysis with different diaphragm thicknesses. Plastic zones of CFT flange was found and matched closely to FEM results. Both analytical and experimental results showed good agreement that vertical diaphragm effectively alleviates the stress and transfer the force.

A Study on the Buckling Strength of Centrally Compressed Stainless Steel Tubular Columns (중심압축하중을 받는 스테인리스 강관 기둥의 좌굴내력에 관한 연구)

  • Jang, Ho Ju;Yang, Young Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.207-216
    • /
    • 2005
  • The maximum strength of the stainless steel square and the circular hollow section columns, which are cold-formed and TIG welded, is experimented on and analyzed. The paper presents centrally compressed experiments, including stub column tests and coupon tests, on stainless steel pipe columns. A total of 24 stainless steel pipe column experiments are conducted, using the slenderness ratios ($L_k/r$ = 20, 30, 40, 50, 60, 70) as parameters. The experimental results were compared with the design standard curves, AIK-LSD and AISC-LRFD, AIJ-LSD, SIJ-ASD curves, and multiple column curves.

An Study on the Stiffened Effect of K-type Tubular Connection (강관 K형 접합부의 보강효과에 관한 연구)

  • Kim, Woo Bum;Lee, Young Jung;Kim, Kap Sun;Chung, Soo Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.6
    • /
    • pp.609-619
    • /
    • 2001
  • It is almost impossible to evaluate the ultimate strength theoretically, because the behavior of Gusset-Tube connection stiffened with rib-plate is considerably complicate. Therefore in this study a finite element model of gusset-tube connection stiffened with rib-plate was established. The validity of finite element analysis was examined through comparing with previous experimental result and the behavior and strength of the connection was examined. From the parametric study considering lateral force ratio, eccentricity, gusset length based on finite element model, the stiffened effect was estimated and stiffening method was proposed.

  • PDF

Stability of Moment Resisting Steel Frames with Weak Beams (보항복형 강구조골조의 안정성에 관한 연구)

  • Shin, Yong Woo;Kim, Hee Dong;Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.253-261
    • /
    • 1998
  • The buckling length of exterior beam-columns of the first floor in moment resisting steel frames with weak beams is uncertain when plastic hinges occur at the ends of weak beams due to seismic loads. The objective of this study is to investigate the buckling strength of concrete-filled tubular beam-columns and to suggest the reduced buckling length of them to apply to the beam-column design code. The exterior beam-columns are modelized with horizontal displacement restraint springs. Their strength and reduced buckling length are evaluated by numerical analysis.

  • PDF