• Title/Summary/Keyword: tuber formation temperature

Search Result 13, Processing Time 0.024 seconds

STUDIES ON THE PHYSIOLOGY OF DEVELOPMENT IN CROPS. 4. STUDIES ON PHYTOPERIODICAL CONTROL FOR TUBER FORMATION IN SWEET POTATO

  • Kim, Yong-Choll
    • Journal of Plant Biology
    • /
    • v.2 no.1
    • /
    • pp.35-42
    • /
    • 1959
  • The cuttings and apical portion of stein in sweet potato were growlh under artificial light and specific photoperied and temperature. Though the plant growth was poor under insufficient light intensity of artificial light, the tuber formations were induced at long light period (16L+8D) and not induced at short light period (8L+16D) and low temperature of darkparied. The determinative factor for tuber formation of sweet potato seems to be a stimulation which has intimate relationship with specific photoperiod and temperature and no direct relation with the growth of plant body and light intensity. The root pattern of inductive state for tubers and non-inductive state were different distinctly, the former were silky and slender, the latter were branchy, and stout appearence. This different root pattern must be due also to the specific photoperiod and temperature and may have any relationship with the stimulation for tuber formation from the point of auxin physiology etc.

  • PDF

Germination of Yam Bean Seeds as Affected by Temperature and Its Productivity with Different Seeding Dates (얌빈의 온도별 발아특성과 파종시기에 따른 생산성 비교)

  • Uhm, Mi Jeong;Kim, Chi Seon;Kim, Eun Ji;Jung, Hyun Soo;Kim, Jeong Man
    • Journal of Bio-Environment Control
    • /
    • v.27 no.3
    • /
    • pp.245-252
    • /
    • 2018
  • Yam bean (Pachyrhizus erosus) is a subtropical plant belonging to the Fabaceae family, and is a tuberous vegetable used as various food material with a crisp and juicy taste. This study was conducted to seek optimum sowing time of yam bean in Korea. For this, we surveyed germination properties by the different temperatures and compared the accumulation temperature (AT) and dry matter production (DMP) on growth stages of yam bean by the different sowing times. Two types of varieties cultivated mainly in Korea, Thailand local variety (TLV) and Cheongunmanma cultivar (CGMM), was used. The germination rate of yam bean was 86.0~94.0% at above $18^{\circ}C$, and germination days was longer at lower temperature. The times for flowering and tuber formation of CGMM were later than those of TLV, and the AT required for flowering, tuber formation and hypertrophy of CGMM were higher than those of TLV by $293^{\circ}C$, $280^{\circ}C$ and $108^{\circ}C$, respectively. Also, DMP of shoot and tuber in CGMM were greater than those in TLV. In sowing at April 25, tuber formation was slower than sowing after that time, and harvest index (HI) was relatively low due to delayed formation and hypertrophy of tuber. In sowing after June 9, DMP of shoot was relatively greater in early growth, but tuber was not sufficient to enlarge due to lack of growth days by cold and frost in late October. In sowing May 10 and 25, DMP of tuber and HI were the highest, because the change of day length and temperature gave an advantage to vegetable growth and tuber development. All above suggest that it was suitable to sow seeds on May for increment of tuber productivity in Korea.

Some Biological Characteristics of Tuber Formation in Eleocharis kuroguwai (올방개 괴경(塊莖) 형성(形成)에 관(關)한 생물학적(生物學的) 특성(特性))

  • Shin, H.S.;Chun, J.C.
    • Korean Journal of Weed Science
    • /
    • v.13 no.2
    • /
    • pp.132-137
    • /
    • 1993
  • Some biological characteristics with respect to tuber formation of Eleocharis kuroguwai Ohwi were investigated. Tuber formation was initiated at the descending time of daily maximum and minimum temperatures, accelerated under the minimum temperature lower than $20^{\circ}C$, and terminated at about $10^{\circ}C$. Tubers produced at the early season were located at deeper soil layers. Large tubers were found at deeper soil depths and required the longer period for sprouting as compared with small tubers. Percent emergence decreased as the emergence depth increased, while percent old-tuber produced during previous years was greater at the deeper depths.

  • PDF

Studies on the Environmental Factors Affecting Growth and Tuber Formation of Eleocharis kuroguwai Ohwi (올방개(Eleocharis kuroguwai Ohwi)의 생장(生長)과 괴경형성(塊莖形成)에 미치는 환경요인(環境要因))

  • Ku, Y.C.;Choung, S.G.
    • Korean Journal of Weed Science
    • /
    • v.13 no.1
    • /
    • pp.44-54
    • /
    • 1993
  • This experiment was conducted to understand the environmental factors affecting growth and tuber formation such as temperature, day length, tight intensity, water condition and cutting time of Eleocharis kuroguwai Ohwi. Plant height, shoot number and dry weight of E. kuroguwai were higher at high temperature, 25/$25^{\circ}C$ (day/night), while nitrogen content was higher at low temperature, 20/$15^{\circ}C$. Plant height was more affected by water temperature, while shoot number and dry weight were more affected by air temperature. Contents and absorption of nitrogen, phosphorus, and potassium in top parts of E. kuroguwai were higher under greater difference between air and water temperatures, i.e., 18/$28^{\circ}C$ and 28/$18^{\circ}C$. The number and weight of tubers were increased under greater difference between air and water temperatures, i.e, 18/$28^{\circ}C$ and 28/$18^{\circ}C$, while they were inhibited at low or high air/water temperatures (18/$18^{\circ}C$ or 28/$28^{\circ}C$). Tubers of E. kuroguwai were formed at 8-or 12-hour day length, however, no tuber was formed at l6-hour day length. Photoinductive period for tuber initiation of E. kuroguwai was between 30 and 45 days after emergence, and the induction period of short-day treatment was less than 10 days. Tuber number and weight were reduced by shading due to inhibition of the growth of top and underground parts. Number of days from planting to tuber initiation was shortned as planting time was delayed and plant height, dry weight, and tuber number were also reduced by delayed planting. Tuber number at l0 to 15cm water depth was decreased 63 to 75% as compared with 1 to 5cm water depth. Tuber number and dry weight were not affected by the size of tubers at planting. Due to the reduced growth of top and underground parts, tuber number and dry weight of E. kuroguwai were decreased by delayed shoot cutting. The critical cutting time to inhibit the growth of E. kuroguwai was about 70 days after emergence.

  • PDF

Studies on the Effects of Various Treatments on the Tuber Formation of Potatoes (각종처리가 감자 괴경형성에 미치는 영향)

  • Jae-Young Cho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.21 no.1
    • /
    • pp.125-131
    • /
    • 1976
  • To study the effects of temperature, day length, and various plant growth regulator treatments on the tuber formation of Irish cobbler, this experiment was carried out with 2 combinations of day-length and temperature and 11 kinds of growth regulator, including GA, and their combinations. For the tuber formation, low temperature-short day condition played decisive role, and exceeded the effects of growth regulators. 4 times foliar application of 10 ppm GA resulted marked elongation of stolon but did not inhibit the tuber formation even under high temperature longday condition.

  • PDF

Reproductive Growth and Competitive Ecology of Arrowhead(Sagittaria trifolia L.) - 1. Growth and Tuber Formation of Arrowhead under Several Environmental Factors (벗풀(Sagittaria trifolia L.)의 번식생장(繁殖生長) 및 경합생태(競合生態) - 1. 벗풀의 번식생장(繁殖生長))

  • Han, S.S.
    • Korean Journal of Weed Science
    • /
    • v.13 no.2
    • /
    • pp.138-150
    • /
    • 1993
  • Experiments were carried out to understand how much do the environmental factors affect growth and tuber formation of arrowhead, Sagittaria trifolia L. The more the light transmittance decreased, the more the numbers of leaves and floral axes decreased. The dry matter weight of tops and the number and the fresh weight of formated tuber were significantly different between the light transmittance of more than 50% and that of less than 30% at the 5% level of DMRT. Plant height, number and width of leaves, and number of floral axis were affected by the Light spectra. And the degree of their effects on growth of arrowhead was different form the light spectrum. The natural light and the clear cellophane film were the most effective to increase the number and the fresh weight of formated tuber and the green spectrum was the least effective to do those. Plant height grown at 0-5cm water depth was shorter than that at 10-20cm water depth. The deeper the water depth was, the lower the leaves number was. The fresh weight and the number of arrowhead tuber were most produced at 0cm water depth and theose were least at 20cm water depth. The shoot growth and the tuber formation of arrowhead was much increased with increase of the application rate of fertilizer. The difference of the transplanted tuber size was not affected at the shoot growth, but tuber formation of arrowhead was increased with increase of the transplanted tuber size. From viewing the effect of temperature after rice heading, the shoot growth and the tuber formation at $35^{\circ}C$ were also higher than those at $25^{\circ}C$.

  • PDF

Effect of Immature Rhizome Productivity according to Harvest Times-based Treatment Method for Seed Production of Gastrodia elata (천마 종자 생산을 위한 수확시기별 처리방법에 따른 자마 생산력 효과)

  • Kim, Chang Su;Kim, Hyo Jin;Seo, Sang Young;Kim, Hee Jun;Lee, Wang Hyu
    • Korean Journal of Plant Resources
    • /
    • v.31 no.4
    • /
    • pp.372-377
    • /
    • 2018
  • This study was investigated the effect of immature rhizome production according to harvest times-based treatment method for seed production of Gastrodia elata. The results revealed that when the tuber weight of G. elata harvested in spring (GEHS) was ${\geq}100g$, the rate of artificial fertilization, protocorm formation, and immature rhizome formation was 90.9%-94.8%, 3.1%-5.4%, and 10.1%-15.3%, respectively. When G. elata harvested in fall (GEHF) was treated at a low temperature for 4 weeks or more, the rate of artificial fertilization, protocorm formation, and immature rhizome formation was 70.4%-87.6%, 2.2%-2.6%, 8.7%-9.5%, respectively. Therefore, to produce seeds and immature rhizomes, GEHS must have tubers of more than 100 g, whereas GEHF requires breaking dormancy by low-temperature treatment for 4 weeks or more. Compared with those of GEHS, the rate of artificial fertilization, protocorm formation, and immature rhizome formation was lower in GEHF; however, it was higher than those in the natural germination state. Thus, it can be expected that G. elata can be produced throughout the year by ensuring that the seeds and immature rhizomes of G. elata are produced using a constant tuber weight and by breaking dormancy with low temperature treatment.

The ptimum temperatures during cultivation period of Gastrodia elata according to growth stages (천마 생육단계별 변온에 의한 최적온도 및 재배기간)

  • Kim, Chang-Su;Kim, Hyo-Jin;Seo, Sang-Young;Kim, Hee-Jun;Lee, Wang-Hyu
    • Journal of Mushroom
    • /
    • v.16 no.2
    • /
    • pp.90-95
    • /
    • 2018
  • This study was carried out to investigate the optimum temperature and the cultivation period according to the different growth stages of Gastrodia elata (G. elata). The growth period for the indoor cultivation of G. elata is divided into four stages that require specific temperatures during the enlargement of the tuber. The optimum temperatures and cultivation periods during the growth stages of G. elata were observed to be $20^{\circ}C$ for 30 days during the mycelial growth stage (MGS), $25^{\circ}C$ for 120 days during the tuber formation stage (TFS), $6-24^{\circ}C$ for 60 days during the tuber enlargement stage (TES), and $5^{\circ}C$ for 30 days during the dormant stage (DS). The total cultivation period was shortened by 120 days in the indoor cultivation facilities by reduction of 30 days from the mycelial growth stage, addition of 30 days to the tuber formation stage, and reduction of 120 days from the dormancy stage as compared to the outdoor field cultivation. These results provide a basis for a growth model that permits year-round cultivation of G. elata.

Influences by position of node and existence of leaf on microtuberization in node culture of potato (감자절간배양에서 마디위치 및 잎의 부착유무에 따른 소괴경형성의 차이)

  • Hwang, Hye-Yeon;Lee, Young-Bok
    • Journal of Plant Biotechnology
    • /
    • v.35 no.1
    • /
    • pp.63-68
    • /
    • 2008
  • Single-node stem pieces ca. 1 cm in length containing a axillary bud were obtained from in vitro plants of potato (Solanum tuberosum L.). The influences by a position of the node and the existence of a leaf at the node were observed in the single-node culture on the 8% sucrose MS medium. The effect of CCC was also investigated for the microtuberization. The apical part node was excellent in the tuberization not to mention shoot length, fresh weight, diameter, the number of node on the in vitro culture of a single-node than the lower part. The differences in the diameter of a tuber formed in the part of the axillary bud on all treatments including the cultivation of the apical part node were not recognized. However, the fresh weight of the tuber showed high value in the tuber formed at the axillary bud of shoot apex part. At 20 days after cultivation, tuberization was promoted in the new stolen that developed from the bud of node with a leaf under SD condition of 8 hours at $20^{\circ}C$. The tuberization from axillary bud of the single-node without leaf was inhibited at high temperature of $28^{\circ}C$ regardless of daylength. Whereas, tuberization at $20^{\circ}C$ and $28^{\circ}C$ was similar without the difference under SD condition but the tuber formation ratio were low. CCC 500 mg/L promoted tuberization and the effect was also showed even under LD condition at $28^{\circ}C$. The inhibiton of tuberization under LD and high temperature condition could be solved by treatment with CCC.

Distribution and Changes in Occurrence of Fingerprint Stem Blight of Eleocharis kuroguwai Caused by Epicoccosorus nematosporus in Korea

  • Hong, Yeon-Kyu;Ryu, Kil-Lim;Hyun, Jong-Nae;Uhm, Jae-Youl;Kim, Soon-Chul
    • The Plant Pathology Journal
    • /
    • v.18 no.3
    • /
    • pp.152-155
    • /
    • 2002
  • Epicoccosorus nematosporus was detected in all 22 counties surveyed, but the frequency of occurrence of fingerprint stem blight disease (FSBD) on Eleocharis kuroguwai caused by the fungus varied with fields and regions. The disease occurred more frequently in mountain areas than in plain areas. E. nematosporus was detected in less than 20% of plain areas such as Cimjae and Milyang, whereas, it occurred in 40-60% of mountain areas such as Sangiu and Jangsoo. In Milyang, mean temperature in July to August 1993 ranged from 17 to $27^{\circ}C$ with 14.3 h of dew period. Meanwhile, in the mountain area such as Sangiu, Gyeongbook, temperature ranged from 17 to $24^{\circ}C$ with 16.1 h of dew period. Plant mortality was 61% in Milyang and 82% in Sangju. Underground tuber formation was highly suppressed at 16 and 33 tubers per plot in Sangju and Milyang, respectively. In 1992 and 1995, plants infected ranged from 40 to 78% in July to September. This sharply decreased to an average of 15% in 1999.