• Title/Summary/Keyword: tube inspection robot

Search Result 14, Processing Time 0.033 seconds

DEVELOPMENT OF A STEAM GENERATOR TUBE INSPECTION ROBOT WITH A SUPPORTING LEG

  • Shin, Ho-Cheol;Jeong, Kyung-Min;Jung, Seung-Ho;Kim, Seung-Ho
    • Nuclear Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.125-134
    • /
    • 2009
  • This paper presents details on a tube inspection robotic system and a positioning method of the robot for a steam generator (SG) in nuclear power plants (NPPs). The robotic system is separated into three parts for easy handling, which reduces the radiation exposure during installation. The system has a supporting leg to increase the rigidity of the robot base. Since there are several thousands of tubes to be inspected inside a SG, it is very important to position the tool of the robot at the right tubes even if the robot base is positioned inaccurately during the installation. In order to obtain absolute accuracy of a position, the robot kinematics was mathematically modeled with the modified DH(Denavit-Hartenberg) model and calibrated on site using tube holes as calibration points. To tune the PID gains of a commercial motor driver systematically, the time delay control (TDC) based gain tuning method was adopted. To verify the performance of the robotic system, experiments on a Framatomes 51B Model type SG mockup were undertaken.

Motion planning of a steam generator mobile tube-inspection robot

  • Xu, Biying;Li, Ge;Zhang, Kuan;Cai, Hegao;Zhao, Jie;Fan, Jizhuang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1374-1381
    • /
    • 2022
  • Under the influence of nuclear radiation, the reliability of steam generators (SGs) is an important factor in the efficiency and safety of nuclear power plant (NPP) reactors. Motion planning that remotely manipulates an SG mobile tube-inspection robot to inspect SG heat transfer tubes is the mainstream trend of NPP robot development. To achieve motion planning, conditional traversal is usually used for base position optimization, and then the A* algorithm is used for path planning. However, the proposed approach requires considerable processing time and has a single expansion during path planning and plan paths with many turns, which decreases the working speed of the robot. Therefore, to reduce the calculation time and improve the efficiency of motion planning, modifications such as the matrix method, improved parent node, turning cost, and improved expanded node were proposed in this study. We also present a comprehensive evaluation index to evaluate the performance of the improved algorithm. We validated the efficiency of the proposed method by planning on a tube sheet with square-type tube arrays and experimenting with Model SG.

Development of a Nuclear Steam Generator Tube Inspection/maintenance Robot

  • Shin, Ho-Cheol;Kim, Seung-Ho;Seo, Yong-Chil;Jung, Kyung-Min;Jung, Seung-Ho;Choi, Chang-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2508-2513
    • /
    • 2003
  • This paper presents a nuclear steam generator tube inspection/maintenance robot system. The robot assists in automatic non-destructive testing and the repair of nuclear steam generator tubes welded into a thick tube sheet that caps a hemispherical or quarter-sphere plenum which is a high-radiation area. For easy carriage and installation, the robot system consists of three separable parts: a manipulator, a water-chamber entering and leaving device for the manipulator and a manipulator base pose adjusting device. A software program to control and manage the robotic system has been developed on the NT based OS to increase the usability. The software program provides a robot installation function, a robot calibration function, a managing and arranging function for the eddy-current test, a real time 3-D graphic simulation function which offers remote reality to operators and so on. The image information acquired from the camera attached to the end-effecter is used to calibrate the end-effecter pose error and the time-delayed control algorithm is applied to calculate the optimal PID gain of the position controller. The developed robotic system has been tested in the Ulchin NPP type steam generator mockup in a laboratory.

  • PDF

Dimensional synthesis of an Inspection Robot for SG tube-sheet

  • Kuan Zhang;Jizhuang Fan;Tian Xu;Yubin Liu;Zhenming Xing;Biying Xu;Jie Zhao
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2718-2731
    • /
    • 2024
  • To ensure the operational safety of nuclear power plants, we present a Quadruped Inspection Robot that can be used for many types of steam generators. Since the Inspection Robot relies on the Holding Modules to grip the tube-sheet, it can be regarded as a hybrid robot with variable configurations, switching between 4-RRR-RR, 3-RRR-RR, and two types of 2-RRR-RR, and the variable configurations bring a great challenge to dimensional synthesis. In this paper, the kinematic model of the Inspection Robot in multiple configurations is established, and the analytical solution is given. The workspace mapping is analyzed by the solution-space, and the workspace of multiple configurations is decomposed into the workspace of 2-RRR to reduce the analysis complexity, and the workspace calculation is simplified by using the envelope rings. The optimization problem of the manipulator is transformed into the calculation of the shortest contraction length of the swing leg. The switching performance of the Inspection Robot is evaluated by stride-length, turning-angle, and workspace overlap-ratio. The performance indexes are classified and transformed based on the proportions and variation trends of dimensional parameters to reduce the number of optimization objective functions, and Pareto optimal solutions are obtained using an intelligent optimization algorithm.

Pipe Inspection Robot Using an Inch-Worm Mechanism with Embedded Pneumatic Actuators

  • Choi, Chang-Hwan;Jung, Seung-Ho;Kim, Seung-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.346-351
    • /
    • 2005
  • The outlet feeder pipe thinning in a PHWR (Pressurized Heavy Water Reactor) is caused by high pressure steam flow inside the pipe, which is a well known degradation mechanism called FAC (Flow Assisted Corrosion). In order to monitor the degradation, the thickness of the outlet bends closed to the exit of the pressure tube should be measured and analyzed at every official overhaul. This paper develops a mobile feeder pipe inspection robot that can minimize the irradiation dose of human workers by automating the measurement process. The robot can move by itself on the feeder pipe by using an inch worm mechanism, which is constructed by two gripper bodies that can fix the robot body on the pipe, one extendable and contractable actuator, and a rotation actuator connected the two gripper bodies to move forward and backward, and to rotate in the circumferential direction

  • PDF

Tube-Hole Center Detection Vision Algorithm for Verifying Position of Tele-Controlled Robot in Nuclear Steam Generator (원전 증기발생기 내 원격제어 로보트의 위치 검증을 위한 세관중심 검출 비젼 알고리듬)

  • 성시훈;강순주;진성일
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.2
    • /
    • pp.137-145
    • /
    • 1998
  • In this paper, we propose a tube-hole center detection vision algorithm verifying the position of a tele-controlled robot and providing visual information for increasing reliability and efficiency in the diagnosis of steam generator (SG) tubes in nuclear power plant. A tele-controlled robot plays a role in carrying the probe used in inspecting the integrity of SG tubes. Thus accurately locating a tele-controlled robot on the desired tube-hole center is important issue for reliability of inspection. To do this work, we have to find the tube-hole center locations from the input image. At first, we apply the three-class segmentation method modified for this application. WE extract minimum bounding rectangles (MBRs) in the theresholded binary image. Second, for discriminating between MBR by tube and MBR by noise, we introduce the MBR rejection rules as knowledge-based rule set. MBRs are divided into the very dark region MBRs and the very bright region MBRs. In order to describe the region of complete tube-hole, the MBRs need a process of pairing each other. We then can find the tube-hole center from the paired MBR. For more accurately finding the tube-hole center in several sequential images, the centers of some frames need to be averaged. We tested the performance of our method using hundreds of real images.

  • PDF

Locomotion Mechanism Using a Combination Cam with Multi-Phases (다중 위상차를 갖는 조합형 캠을 이용한 다족형 이동 메커니즘)

  • Kim, Kyung-Dae;Jeong, Youn-Koo;Kim, Byung-Kyu;Park, Jong-Oh
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2598-2604
    • /
    • 2002
  • Robots that can move along the narrow and rough tube are very important as the request for the inspection increases. It is necessary for the inspection robots to have a capability to move successfully at even overturned situation and have a simple mechanism to reduce the unexpected failure possibility fer the successful completion of the given mission. Through this paper, the authors propose a novel and simple mechanism using a combination cam device to generate the locomotive motion of multi-legs. This robot uses one DC motor and one combination cam shaft to generate the locomotive motion and can move rough tubes without failure even at the overturned situation. The robot also shows enough fragging force fer the connected line that is very important for a wired inspection robot. Kinematics analysis to design the specification of the robot will be followed and several applications show this robot's potential capabilities.

Feeder Pipe Inspection Robot with an Inch-Worm Mechanism Using Pneumatic Actuators

  • Choi, Chang-Hwan;Jung, Seung-Ho;Kim, Seung-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.87-95
    • /
    • 2006
  • The outlet feeder pipe thinning in a PHWR (Pressurized Heavy Water Reactor) is caused by a high pressure steam flow inside the pipe, which is a well known degradation mechanism called a FAC (Flow Assisted Corrosion). In order to monitor the degradation, the thickness of the outlet bends close to the exit of the pressure tube should be measured and analyzed at every official overhaul. This paper describes a mobile feeder pipe inspection robot that can minimize the irradiation dose to human workers by automating the measurement process. The robot can move by itself on the feeder pipe by using an inch worm mechanism, which is constructed by two gripper bodies that can fix the robot body on to the pipe, one extendable and contractible actuator, and a rotation actuator connected to the two gripper bodies to move forward and backward, and to rotate in a circumferential direction.

An automatic motorized feeder pipe inspection robot (자율 주행형 급수 배관 검사)

  • Choi, Chang-Hwan;Jeon, Pung-Woo;Choi, Yong-Je;Jeong, Seung-Ho;Kim, Seung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.816-821
    • /
    • 2004
  • The outlet feeder pipe thinning in a PHWR (Pressured Heavy Water Reactor) is caused by high pressure steam flow inside the pipe, which is a well known degradation mechanism called FAC (Flow Assisted Corrosion). In order to monitor the degradation, the thickness of the outlet bends closed to the exit of the pressure tube should be measured and analyzed at every official overhaul. This paper develops an automatic feeder pipe inspection system that can minimize the irradiation dose by automating the measurement process. The robot can move by itself on the feeder pipe by using an inch worm mechanism, which is constructed by two gripper bodies that can fix their body on the pipe and one extendable and retractable body connected the two gripper bodies to move forward and backward.

  • PDF