• Title/Summary/Keyword: truss bridges

Search Result 99, Processing Time 0.024 seconds

A Speed Increasing Test of BIMODALTRAM for Dynamic Response Analysis of Pipe-truss Bridges (파이프 트러스교의 동적특성 분석을 위한 바이모달트램 주행실험연구)

  • Kim, Hee-Ju;Jun, Myung-Il;Cho, Eun-Sang;Hwang, Won-Sup
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.2
    • /
    • pp.137-142
    • /
    • 2011
  • A bimodal tram is a new design vehicle introduced to improve a current transportation system, and it has advantages of a bus and a subway. A pipe truss bridge, an exclusive road of the bimodal tram, is constructed for introduction of the bimodal tram. An analysis of dynamic response characteristics is required because this new bridge has never constructed before. A speed increasing test on the pipe truss bridge was conducted with attaching a sensor to bottom of the bridge. Also, Dynamic response characteristics were analyzed by measuring displacements, the maximum vertical and horizontal acceleration about the new bridge through the experiment.

Temporary aerodynamic countermeasures for flutter suppression of a double-deck truss girder during erection

  • Zewen Wang;Bokai Yang;Haojun Tang;Yongle Li
    • Wind and Structures
    • /
    • v.38 no.5
    • /
    • pp.399-410
    • /
    • 2024
  • Long-span suspension bridges located in typhoon-prone regions face significant risks of flutter instability, particularly in girder erection. Despite the implementation of aerodynamic countermeasures designed for the service stage, the flutter stability of bridge in girder erection may not meet the required standards. Nowadays, the double-deck truss girder is increasingly common in practical engineering which exhibits different performance from the single-deck truss girder. To gain insights into the flutter performance of this girder type and determine temporary aerodynamic countermeasures for flutter suppression in girder erection, wind tunnel tests were conducted. The effects of affiliated members on the flutter performance were first examined. Subsequently, different aerodynamic countermeasures were designed and their effectiveness was tested. The results indicate that the stabilizers above and below the upper and lower decks are the most effective for the flutter stability of bridge at positive and negative angles of attack, respectively. The higher the stabilizers are, the better the effect on flutter suppression achieves. Considering the feasibility in practical engineering, a temporary stabilizer above the upper deck was considered. It is expected that the results could provide references for the aerodynamic design of double-deck truss girder during erection.

Torsional Behavior of Hybrid Truss Bridge according to Connection Systems (복합트러스교의 격점구조별 비틀림 거동)

  • Jung, Kwang-Hoe;Lee, Sang-Hyu;Yi, Jong-Won;Choi, Ji-Hun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.63-72
    • /
    • 2013
  • HTB (hybrid truss bridge) steel truss webs instead of concrete webs in prestressed box girder bridges has been widely used in, because of its structural benefit such as relatively less self-weight and good aesthetics due to open web structure. Since the core technology of this bridge is the connection system between concrete slabs and steel truss members, several connection systems were proposed and experimentally evaluated. Also, the selected joint system was applied to the real bride design and construction. The researches were performed on the connection system, since it can affect the global behavior of this bridge such as flexural and fatigue behaviors as well as the local behavior around the connection region. The evaluation study showned that HTB applied to a curved bridge or a eccentric loading bridge, characteristic has a weak torsional capacity compared to an ordinary PSC box girder bridges due to the open structure of HTB. In this study, three box shaped hybrid truss specimens were made and the torsional test and evaluation for them were performed in order to find out the torsional behavior of HTB according to the connection system.

Effects of types of bridge decks on competitive relationships between aerostatic and flutter stability for a super long cable-stayed bridge

  • Hu, Chuanxin;Zhou, Zhiyong;Jiang, Baosong
    • Wind and Structures
    • /
    • v.28 no.4
    • /
    • pp.255-270
    • /
    • 2019
  • Aerodynamic configurations of bridge decks have significant effects on the aerostatic torsional divergence and flutter forsuper long-span bridges, which are onset for selection of suitable bridge decksfor those bridges. Based on a cable-stayed bridge with double main spans of 1500 m, considering typical twin-box, stiffening truss and closed-box section, which are the most commonly used form of bridge decks and assumed that the rigidity of those section is completely equivalent, are utilized to investigate the effects of aerodynamic configurations of bridge decks on aerodynamic instability performance comprised of the aerostatic torsional divergence and flutter, by means of wind tunnel tests and numerical calculations, including three-dimensional (3D) multimode flutter analysis and nonlinear aerostatic analysis. Regarding the aerostatic torsional divergence, the results obtained in this study show twin-box section is the best, closed-box section the second-best, and the stiffening truss section the worst. Regarding the flutter, the flutter stability of the twin-box section is far better than that of the stiffening truss and closed-box section. Furthermore, wind-resistance design depends on the torsional divergence for the twin-box and stiffening truss section. However, there are obvious competitive relationships between the aerostatic torsional divergence and flutter for the closed-box section. Flutter occur before aerostatic instability at initial attack angle of $+3^{\circ}$ and $0^{\circ}$, while the aerostatic torsional divergence occur before flutter at initial attack angle of $-3^{\circ}$. The twin-box section is the best in terms of both aerostatic and flutter stability among those bridge decks. Then mechanisms of aerostatic torsional divergence are revealed by tracking the cable forces synchronous with deformation of the bridge decksin the instability process. It was also found that the onset wind velocities of these bridge decks are very similar at attack angle of $-3^{\circ}$. This indicatesthat a stable triangular structure made up of the cable planes, the tower, and the bridge deck greatly improves the aerostatic stability of the structure, while the aerodynamic effects associated with the aerodynamic configurations of the bridge decks have little effects on the aerostatic stability at initial attack angle of $-3^{\circ}$. In addition, instability patterns of the bridge depend on both the initial attack angles and aerodynamic configurations of the bridge decks. This study is helpful in determining bridge decksfor super long-span bridges in future.

Design of Load and Strain Measuring Equipment Using Strain Gage, Instrumental Differential Amplifier and A/D Converter in a Truss System (스트레인 게이지 계측용 차동 증폭기와 A/D 변환기를 이용한 트러스 구조물의 내력 측정 장치 설계)

  • Baek, Tae-Hyun;Lee, Byung-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.217-224
    • /
    • 2008
  • Trusses are found in many common structures such as bridges and buildings. The truss is a fundamental design element in engineering structures and it is important for an engineer to apply the truss design to engineering structures by understanding the mechanics of truss element. In an experimental course, the experiment selves as an example of the usefulness of the Wheatstone bridge in amplifying the output of a transducer. With the apparatus described here, it is possible to obtain experimental measurements of forces in a truss member which agree within errors to predictions from elementary mechanics. The apparatus is inexpensive, easy to operate, and suitable as either a classroom demonstration or student laboratory experiment. This device is a small table-top experiment. The conventional strain measuring device is costly and complicated - it is not simple to understand its structure. Hence, strain gage and the A/D converter are assembled to come up with a load and a strain measuring device. The device was tested for measuring the strain in a loaded specimen and the results were compared to those predicted by theory of mechanics.

An Improved Model for Structural Analysis of Cable-stayed Bridges (사장교의 구조해석을 위한 개선된 해석모델)

  • 최창근;김선훈;송명관
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.69-76
    • /
    • 2000
  • In this study, an improved analysis model for the more efficient and accurate structural analysis of cable-stayed bridges is presented. In this model, beam elements, of which stability functions are stabilized by the use of Taylor's series expansions, are used to model space frame structures, and truss elements, of which equivalent elastic moduli are evaluated on the assumption that the deflected shape of a cable has a catenary function, are used to model cables. By using the proposed analysis model, nonlinear static analysis and natural vibration analysis of 2-dimensional and 3-dimensional cable-stayed bridges are carried out and are compared with the analysis results reported by other researchers.

  • PDF

Probabilistic determination of initial cable forces of cable-stayed bridges under dead loads

  • Cheng, Jin;Xiao, Ru-Cheng;Jiang, Jian-Jing
    • Structural Engineering and Mechanics
    • /
    • v.17 no.2
    • /
    • pp.267-279
    • /
    • 2004
  • This paper presents an improved Monte Carlo simulation for the probabilistic determination of initial cable forces of cable-stayed bridges under dead loads using the response surfaces method. A response surface (i.e. a quadratic response surface without cross-terms) is used to approximate structural response. The use of the response surface eliminates the need to perform a deterministic analysis in each simulation loop. In addition, use of the response surface requires fewer simulation loops than conventional Monte Carlo simulation. Thereby, the computation time is saved significantly. The statistics (e.g. mean value, standard deviation) of the structural response are calculated through conventional Monte Carlo simulation method. By using Monte Carlo simulation, it is possible to use the existing deterministic finite element code without modifying it. Probabilistic analysis of a truss demonstrates the proposed method' efficiency and accuracy; probabilistic determination of initial cable forces of a cable-stayed bridge under dead loads verifies the method's applicability.

Initial Equilibrium States Analysis of Cable Stayed Bridges Using Least Square Method (오차최소화기법을 적용한 사장교의 초기 평형상태 결정)

  • 조현준;박용명
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.421-428
    • /
    • 2003
  • For the initial equilibrium states of cable stayed bridges, this study presents a method to determine initial cable forces through successive iteration of the cable forces to minimize the errors between target moments or displacements and result of nonlinear analysis. Stay cables are modeled by truss elements and least square method was used to minimize the errors. In the structural characteristics of cable stayed bridges, a large axial force is introduced in the pylon and stiffening girder so fictitious section areas are assumed to determine initial cable forces accurately. To verify usefulness and validity of the proposed algorithm, some numerical analysis has been conducted and compared with the existing study.

  • PDF

A Study on the Expection of the Stress to the Stiffness Variation of Members on Truss Railway Bridge (부재의 강성변화에 따른 강철도 트러스 교량의 발생응력 예측에 관한 연구)

  • Cho, Sun Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.535-541
    • /
    • 1997
  • It is proper that the load distribution and the actual stress of members is analyzed by field measurement in estimating to the behavior of truss railway bridges, but those procedures are very difficult. So, the studies for the deduction of the stress, using the indirect data which are able to get from the research and investigation without field measurement, are needed. In this study, to investigate quantitically the variation of the stress of members, the stresses are obtained from the simulation which is considered the the reduction of the section area and the stiffness due to the corrosion and the degree of the stress ratio and the distribution is calculated. As the results, the stress of truss members is almost lineary increased to the decreasing of the area and the lower chord is greatly affected. And the increasing of the stress is predicted by the superposition to the results of the amount of that in each members.

  • PDF

Evaluation of Impact Factor on Pipe-truss Bridges According to Driving Bimodal Tram (저상굴절차량의 주행에 따른 파이프트러스교의 충격계수 산정)

  • Kim, Hee-Ju;Jun, Myung-Il;Hwang, Won-Sup
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.45-52
    • /
    • 2010
  • This paper estimated the impact factor using the finite element program to confirm the dynamic behavior of new type of bridges constructed by introduction of new vehicles and compared the design criteria about the impact factor applied to domestic as well as each country. The study estimated effects of the impact factor according to pipe truss types modeled as respectively 34m, 44m, 54m and span length. The vehicle models are vehicle for bimodal tram of two axis and three axis which passes on actual bridge and dump truck model proposed by Park Young suk(1997). Each vehicle is estimated the impact factor according to velocity from 10 to 100(km/h) and examined. Also, the study investigated and compared the design regulation of domestic and a foreign country based on the impact factor on span center calculated in accordance with vehicle and span length.