• Title/Summary/Keyword: trowel

Search Result 16, Processing Time 0.031 seconds

FEA simulation for studying the effect of the movable side trowel (FEA simulation을 이용한 Movable Side Trowel의 효과에 대한 연구)

  • Kwon, Hong-Kyu;Kim, Young-Beom
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.2
    • /
    • pp.135-147
    • /
    • 2007
  • 이 논문은 CC 프로세스의 movable side trowel 효과를 연구하기 위한 실험과 모델링을 제시한다. FEA simulation을 이용하여 우리는 movable side trowel의 효과와 움직임에 대한 기초적인 이해를 얻어냈다. 단면의 side trowel 보다 양면의 side trowel이 실제의 3D 형상을 만드는 동안에 층간의 최적의 결합을 만들어 준다는 면에서 가장 적합하다는 것을 알아냈다. 우리의 실험이 위의 결과를 입증하였다.

Omni-Directional Motion Modeling of Concrete Finishing Trowel Robot with Circular Trowels (회전 트로웰의 원판형 가정을 통한 콘크리트 미장로봇의 전방향 운동 모델링)

  • Shin, Dong-Hun;Kim, Ho-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.454-461
    • /
    • 1999
  • A concrete floor trowel machine, developed in the U.S in 1990's, consists of only two rotary trowels, and doesn't need any other mechanism for motion such as wheels. When the machine flattens a concrete floor with its rotary trowels, the machine can move in any direction by utilizing the unbalanced friction forces occurring between the rotary wheels and the floor when the trowels are tilted in appropriate directions. In order to automate the trowels machine, this paper proposed the self-propulsive concrete finishing trowel robot which has twin trowels. For the control of the robot, this paper discussed the following. Firstly, the dynamics model of the driving frictional force applied on each trowel from the floor is derived. Secondly, the relationship between the driving force for the robot and the control variable of the robot is derived. Finally, the basic motion of the robot are realized by using the obtained relationship. This paper figures out how the concrete floor finishing robot with tow trowels moves and will contribute to realizing it.

  • PDF

Initial investigation of 3D free form fabrication Using Contour Crafting with the pivoting side trowel (적층조형설비(CC)을 이용한 3차원모형 제작에 대한 연구)

  • Kwon, Hong-Kyu;Hong, Jung-Eui;Chung, Soo-Suk
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2006.11a
    • /
    • pp.437-450
    • /
    • 2006
  • The Contour Crafting(CC) process, which has been developed at the University of Southern California, aims at automated construction of whole houses as well as sub-components. For this purpose, new trowel mechanism is basically needed in order to fabricate the true 3D shape. This paper presents our concepts and initial investigation of 3D free form fabrication using the pivoting side trowel. Specifically, the status of research and development of the processand experiments with ceramics materials, and its potential application areas are detailed.

  • PDF

Motion Analysis and Dynamic Characteristics of the Concrete Floor Finishing Robot with Deformable Trowels (미장로봇의 운동해석과 동특성 분석)

  • Kim, Jin-Ho;Sin, Dong-Heon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.193-200
    • /
    • 2001
  • Recently, the concrete floor finishing robot, which can be used for flattening and smoothing the concrete floor, has been developed in Korea and Japan. While the previous research assumes that the concrete floor is deformable and the trowel is rigid in modeling the concrete floor finisher, we assume that the concrete floor is rigid and the trowel is deformable. Based on this assumption, we derived the equations of motion and found the convergent velocity of the concrete floor finisher using the computer simulation. From these results, we can understand the relationship between the motion characteristics and the design and control parameter of the robot.

  • PDF

Development of moving algorithm about concrete floor finishing robot with two trowels (2-트로웰 방식 소형 미장로봇의 주행 알고리즘 개발)

  • 우광식;이호길;강민성;송재복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.614-617
    • /
    • 2004
  • The construction industry is typical of the ' job of 3D ', the automated construction equipments are getting used in the domestic construction sites and the construction robots began to be sold in the abroad. The research developed the small sized robot which could be used at the apartments and the office buildings with the small floors. But the past finishing robot could not be operated easily, it had expensive controller which could not increase the production of robot. In this paper, user interface is made to operate easily the small concrete floor finishing robot with two trowel which has low cost controller, motion algorithm including modeling and mechanism about the concrete finishing robot is developed to control moving. Simulation and experiment figure out how the finishing robot moves and will contribute to realizing it.lizing it.

  • PDF

The Motion Control of Concrete Floor Finishing Robot (미장로봇의 운동제어)

  • Shin, Dong-Hun;Han, Doo Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.38-45
    • /
    • 1999
  • The 2-trowel type concrete floor finishing robot can move in any direction by adjusting the posture or trowels without any wheels. Since the quality of the smoothed and polished concrete floor is determined by plastering speed, we need to control the velocity of the robot. However, we cannot use the typical motion control method because it is very difficult to measure the velocity of the robot, in contrast to the mobile robots with wheels. To overcome this difficulty, the following are studied in this paper: we found that the robot dynamics has the disturbance depending on its translational speed, and showed that there exists the saturated velocity of the robot which is set by the posture of the trowels, and obtained the relationship between the saturated velocity and the posture in the translation. The result enables us to control the motion of the robot only by adjusting the posture of trowels without measuring the velocity of the robot. Currently, we built the troweling robot and are experimenting its performance with the proposed motion control method.

  • PDF

EXPERIMENT OF CONCRETE FLOOR FINISHING ROBOT

  • Woo, Kwang-Sik;Lee, Ho-Gil;Kim, Jin-Young;Song, Jae-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1480-1484
    • /
    • 2004
  • In this paper, a self-propulsive and small concrete floor finishing trowel robot with twin trowels is proposed. Due to the small size and omni-directional moving capability, it is adequate for small space such as apartment. By adjusting the posture of trowels, it can move in any direction without wheels. We used cheap PIC processor for the cost saving design of the modules and adopted mode processors for easy operation of control stick. For the position control of the robot, we made a motion control algorithm appealing to the stepping motor driver module and the wireless communication module between the robot and PC (or control stick). In this paper, we discuss the control problem of the floor finishing robot in order to move to the right position. By comparing experimental result with simulation, we show the validity of the robot mechanism, sensors, and the control system.

  • PDF

Properties of Concrete for Industrial Floor using Mineral Admixtures (혼화재를 사용한 산업용 바닥 콘크리트의 물성 검토)

  • Kim, Yong-Ro;Gong, Min-Ho;Park, Jong-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.17-24
    • /
    • 2016
  • Recently, exposed concrete by machinery trowel is generally used in industrial floor such as warehouse. Also, concrete using only the cement has been mainly used except mineral admixture in order to secure surface abrasion resistance. However, in hot weather construction, it is causing a serious problem such as workability inhibition of trowel using only ordinary portland cement. Due to this, it was investigated the effect of application of fly-ash and ground granulated blast furnace slag on properties and abrasion resistance of concrete for industrial floor in this study. The result of this study, it was confirmed that fly-ash and ground granulated blast furnace slag can be used in concrete for industrial floor without affecting significantly the properties of concrete.